1. Robertson MJ, Ritz J. Biology and clinical relevance of human natural killer cells. Blood 1990;76:2421-2438.
[CROSSREF] [PUBMED] [PDF]
2. Galdiero MR, Varricchi G, Marone G. The immune network in thyroid cancer. Oncoimmunology 2016;5:e1168556.
[CROSSREF] [PUBMED] [PMC]
3. Bjorkstrom NK, Ljunggren HG, Michaelsson J. Emerging insights into natural killer cells in human peripheral tissues. Nat Rev Immunol 2016;16:310-320.
[CROSSREF] [PDF]
4. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol 2008;9:503-510.
[CROSSREF] [PUBMED] [PDF]
5. Xu D. Chapter 11, The development and diversity of ILCs, NK cells and their relevance in health and diseases. Regulation of inflammatory signaling in health and disease. Singapore: Springer Singapore; 2017. p. 225-244.
6. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells: a proposal for uniform nomenclature. Nat Rev Immunol 2013;13:145-149.
[CROSSREF] [PDF]
7. Abel AM, Yang C, Thakar MS, Malarkannan S. Natural killer cells: development, maturation, and clinical utilization. Front Immunol 2018;9:1869.
[CROSSREF] [PUBMED] [PMC]
8. Brittenden J, Heys SD, Ross J, Eremin O. Natural killer cells and cancer. Cancer 1996;77:1226-1243.
[CROSSREF] [PUBMED]
9. Farag SS, VanDeusen JB, Fehniger TA, Caligiuri MA. Biology and clinical impact of human natural killer cells. Int J Hematol 2003;78:7-17.
[CROSSREF] [PUBMED] [PDF]
10. Wang F, Tian Z, Wei H. Genomic expression profiling of NK cells in health and disease. Eur J Immunol 2015;45:661-678.
[CROSSREF] [PUBMED]
11. Horowitz A, Strauss-Albee DM, Leipold M, Kubo J, Nemat-Gorgani N, Dogan OC, et al. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci Transl Med 2013;5:208ra145.
[CROSSREF] [PUBMED] [PMC]
12. Marquardt N, Beziat V, Nystrom S, Hengst J, Ivarsson MA, Kekalainen E, et al. Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J Immunol 2015;194:2467-2471.
[CROSSREF] [PUBMED]
13. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol 2001;22:633-640.
[CROSSREF] [PUBMED]
14. Coutelier JP, Kehrl JH, Bellur SS, Kohn LD, Notkins AL, Prabhakar BS. Binding and functional effects of thyroid stimulating hormone on human immune cells. J Clin Immunol 1990;10:204-210.
[CROSSREF] [PUBMED] [PDF]
15. Mocchegiani E, Malavolta M. NK and NKT cell functions in immunosenescence. Aging Cell 2004;3:177-184.
[CROSSREF] [PUBMED]
16. Kmiec Z, Mysliwska J, Rachon D, Kotlarz G, Sworczak K, Mysliwski A. Natural killer activity and thyroid hormone levels in young and elderly persons. Gerontology 2001;47:282-288.
[CROSSREF] [PUBMED]
17. Sharma SD, Tsai V, Proffitt MR. Enhancement of mouse natural killer cell activity by thyroxine. Cell Immunol 1982;73:83-97.
[CROSSREF] [PUBMED]
18. Provinciali M, Muzzioli M, Di Stefano G, Fabris N. Recovery of spleen cell natural killer activity by thyroid hormone treatment in old mice. Nat Immun Cell Growth Regul 1991;10:226-236.
[PUBMED]
19. Botella-Carretero JI, Prados A, Manzano L, Montero MT, Escribano L, Sancho J, et al. The effects of thyroid hormones on circulating markers of cell-mediated immune response, as studied in patients with differentiated thyroid carcinoma before and during thyroxine withdrawal. Eur J Endocrinol 2005;153:223-230.
[CROSSREF] [PUBMED]
20. Dorshkind K, Horseman ND. The roles of prolactin, growth hormone, insulin-like growth factor-I, and thyroid hormones in lymphocyte development and function: insights from genetic models of hormone and hormone receptor deficiency. Endocr Rev 2000;21:292-312.
[PUBMED]
21. Provinciali M, Fabris N. Modulation of lymphoid cell sensitivity to interferon by thyroid hormones. J Endocrinol Invest 1990;13:187-191.
[CROSSREF] [PUBMED] [PDF]
22. Johansson S, Berg L, Hall H, Hoglund P. NK cells: elusive players in autoimmunity. Trends Immunol 2005;26:613-618.
[CROSSREF] [PUBMED]
23. Schleinitz N, Vely F, Harle JR, Vivier E. Natural killer cells in human autoimmune diseases. Immunology 2010;131:451-458.
[CROSSREF] [PUBMED] [PMC]
24. Pedersen BK, Feldt-Rasmussen U, Bech K, Perrild H, Klarlund K, Hoier-Madsen M. Characterization of the natural killer cell activity in Hashimoto's and Graves' diseases. Allergy 1989;44:477-481.
[CROSSREF] [PUBMED]
25. Wenzel BE, Chow A, Baur R, Schleusener H, Wall JR. Natural killer cell activity in patients with Graves' disease and Hashimoto's thyroiditis. Thyroid 1998;8:1019-1022.
[CROSSREF] [PUBMED]
26. Papic M, Stein-Streilein J, Zakarija M, McKenzie JM, Guffee J, Fletcher MA. Suppression of peripheral blood natural killer cell activity by excess thyroid hormone. J Clin Invest 1987;79:404-408.
[CROSSREF]
27. Hidaka Y, Amino N, Iwatani Y, Kaneda T, Nasu M, Mitsuda N, et al. Increase in peripheral natural killer cell activity in patients with autoimmune thyroid disease. Autoimmunity 1992;11:239-246.
[CROSSREF] [PUBMED]
28. Hayslip CC, Baker JR Jr, Wartofsky L, Klein TA, Opsahl MS, Burman KD. Natural killer cell activity and serum autoantibodies in women with postpartum thyroiditis. J Clin Endocrinol Metab 1988;66:1089-1093.
[CROSSREF] [PUBMED] [PDF]
29. Kuijpens JL, De Hann-Meulman M, Vader HL, Pop VJ, Wiersinga WM, Drexhage HA. Cell-mediated immunity and postpartum thyroid dysfunction: a possibility for the prediction of disease? J Clin Endocrinol Metab 1998;83:1959-1966.
[PUBMED]
31. McGregor AM, Petersen MM, McLachlan SM, Rooke P, Smith BR, Hall R. Carbimazole and the autoimmune response in Graves' disease. N Engl J Med 1980;303:302-307.
[CROSSREF] [PUBMED]
32. Wang PW, Luo SF, Huang BY, Lin JD, Huang MJ. Depressed natural killer activity in Graves'; disease and during antithyroid medication. Clin Endocrinol (Oxf) 1988;28:205-214.
[CROSSREF] [PUBMED]
33. Mandal A, Viswanathan C. Natural killer cells: in health and disease. Hematol Oncol Stem Cell Ther 2015;8:47-55.
[CROSSREF] [PUBMED]
34. Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 2000;356:1795-1799.
[CROSSREF] [PUBMED]
35. Haliotis T, Ball JK, Dexter D, Roder JC. Spontaneous and induced primary oncogenesis in natural killer (NK)-cell-deficient beige mutant mice. Int J Cancer 1985;35:505-513.
[CROSSREF] [PUBMED]
36. Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N, et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 2008;28:571-580.
[CROSSREF] [PUBMED] [PMC]
37. Hermanson DL, Kaufman DS. Utilizing chimeric antigen receptors to direct natural killer cell activity. Front Immunol 2015;6:195
[CROSSREF] [PUBMED] [PMC]
38. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. Innate or adaptive immunity? The example of natural killer cells. Science 2011;331:44-49.
[CROSSREF]
39. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005;105:3051-3057.
[CROSSREF] [PDF]
40. Geller MA, Cooley S, Judson PL, Ghebre R, Carson LF, Argenta PA, et al. A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy 2011;13:98-107.
[CROSSREF] [PUBMED]
41. Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med 2016;8:357ra123.
[CROSSREF] [PUBMED] [PMC]
42. Fujii R, Jochems C, Tritsch SR, Wong HC, Schlom J, Hodge JW. An IL-15 superagonist/IL-15Rα fusion complex protects and rescues NK cell-cytotoxic function from TGF-β1-mediated immunosuppression. Cancer Immunol Immunother 2018;67:675-689.
[CROSSREF] [PDF]
43. Spolski R, Li P, Leonard WJ. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat Rev Immunol 2018;18:648-659.
[CROSSREF] [PUBMED] [PDF]
44. Cooper MA, Bush JE, Fehniger TA, VanDeusen JB, Waite RE, Liu Y, et al. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 2002;100:3633-3638.
[CROSSREF] [PUBMED] [PDF]
45. Parhar RS, Zou M, Al-Mohanna FA, Baitei EY, Assiri AM, Meyer BF, et al. IL-12 immunotherapy of Braf(V600E)-induced papillary thyroid cancer in a mouse model. Lab Invest 2016;96:89-97.
[CROSSREF] [PUBMED] [PDF]
46. Gogali F, Paterakis G, Rassidakis GZ, Kaltsas G, Liakou CI, Gousis P, et al. Phenotypical analysis of lymphocytes with suppressive and regulatory properties (Tregs) and NK cells in the papillary carcinoma of thyroid. J Clin Endocrinol Metab 2012;97:1474-1482.
[CROSSREF] [PUBMED] [PDF]
47. Gogali F, Paterakis G, Rassidakis GZ, Liakou CI, Liapi C. CD3(-)CD16(-)CD56(bright) immunoregulatory NK cells are increased in the tumor microenvironment and inversely correlate with advanced stages in patients with papillary thyroid cancer. Thyroid 2013;23:1561-1568.
[CROSSREF] [PUBMED]
48. Yin M, Di G, Bian M. Dysfunction of natural killer cells mediated by PD-1 and Tim-3 pathway in anaplastic thyroid cancer. Int Immunopharmacol 2018;64:333-339.
[CROSSREF] [PUBMED]
49. Melillo RM, Guarino V, Avilla E, Galdiero MR, Liotti F, Prevete N, et al. Mast cells have a protumorigenic role in human thyroid cancer. Oncogene 2010;29:6203-6215.
[CROSSREF] [PUBMED] [PDF]
50. Wennerberg E, Pfefferle A, Ekblad L, Yoshimoto Y, Kremer V, Kaminskyy VO, et al. Human anaplastic thyroid carcinoma cells are sensitive to NK cell-mediated lysis via ULBP2/5/6 and chemoattract NK cells. Clin Cancer Res 2014;20:5733-5744.
[CROSSREF] [PUBMED]