Skip Navigation
Skip to contents

Endocrinol Metab : Endocrinology and Metabolism

clarivate
OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "Endoplasmic reticulum stress"
Filter
Filter
Article type
Keywords
Publication year
Authors
Funded articles
Original Articles
Miscellaneous
AM1638, a GPR40-Full Agonist, Inhibited Palmitate- Induced ROS Production and Endoplasmic Reticulum Stress, Enhancing HUVEC Viability in an NRF2-Dependent Manner
Hwan-Jin Hwang, Joo Won Kim, SukHwan Yun, Min Jeong Park, Eyun Song, Sooyeon Jang, Ahreum Jang, Kyung Mook Choi, Sei Hyun Baik, Hye Jin Yoo
Endocrinol Metab. 2023;38(6):760-769.   Published online November 2, 2023
DOI: https://doi.org/10.3803/EnM.2023.1774
  • 1,197 View
  • 85 Download
AbstractAbstract PDFPubReader   ePub   
Background
G protein-coupled receptor 40 (GPR40) is a key molecule in diabetes and fatty liver, but its role in endothelial dysfunction remains unclear. Our objective in this study was to determine whether GPR40 agonists protect endothelial cells against palmitatemediated oxidative stress.
Methods
Human umbilical vein endothelial cells (HUVECs) were used to investigate effects of various GPR40 agonists on vascular endothelium.
Results
In HUVECs, AM1638, a GPR40-full agonist, enhanced nuclear factor erythroid 2–related factor 2 (NRF2) translocation to the nucleus and heme oxygenase-1 (HO-1) expression, which blocked palmitate-induced superoxide production. Those antioxidant effects were not detected after treatment with LY2922470 or TAK875, GPR40-partial agonists, suggesting that GPR40 regulates reactive oxygen species (ROS) removal in a ligand-dependent manner. We also found that palmitate-induced CCAAT/enhancer‐binding protein homologous protein expression; X-box binding protein-1 splicing, nuclear condensation, and fragmentation; and caspase-3 cleavage were all blocked in an NRF2-dependent manner after AM1638 treatment. Both LY2922470 and TAK875 also improved cell viability independent of the NRF2/ROS pathway by reducing palmitate-mediated endoplasmic reticulum stress and nuclear damage. GPR40 agonists thus have beneficial effects against palmitate in HUVECs. In particular, AM1638 reduced palmitate-induced superoxide production and cytotoxicity in an NRF2/HO-1 dependent manner.
Conclusion
GPR40 could be developed as a good therapeutic target to prevent or treat cardiovascular diseases such as atherosclerosis.
Close layer
Diabetes
Pioglitazone Attenuates Palmitate-Induced Inflammation and Endoplasmic Reticulum Stress in Pancreatic β-Cells
Seok-Woo Hong, Jinmi Lee, Jung Hwan Cho, Hyemi Kwon, Se Eun Park, Eun-Jung Rhee, Cheol-Young Park, Ki-Won Oh, Sung-Woo Park, Won-Young Lee
Endocrinol Metab. 2018;33(1):105-113.   Published online March 21, 2018
DOI: https://doi.org/10.3803/EnM.2018.33.1.105
  • 6,244 View
  • 96 Download
  • 19 Web of Science
  • 23 Crossref
AbstractAbstract PDFPubReader   ePub   
Background

The nuclear receptor peroxisome proliferator-activator gamma (PPARγ) is a useful therapeutic target for obesity and diabetes, but its role in protecting β-cell function and viability is unclear.

Methods

To identify the potential functions of PPARγ in β-cells, we treated mouse insulinoma 6 (MIN6) cells with the PPARγ agonist pioglitazone in conditions of lipotoxicity, endoplasmic reticulum (ER) stress, and inflammation.

Results

Palmitate-treated cells incubated with pioglitazone exhibited significant improvements in glucose-stimulated insulin secretion and the repression of apoptosis, as shown by decreased caspase-3 cleavage and poly (adenosine diphosphate [ADP]-ribose) polymerase activity. Pioglitazone also reversed the palmitate-induced expression of inflammatory cytokines (tumor necrosis factor α, interleukin 6 [IL-6], and IL-1β) and ER stress markers (phosphor-eukaryotic translation initiation factor 2α, glucose-regulated protein 78 [GRP78], cleaved-activating transcription factor 6 [ATF6], and C/EBP homologous protein [CHOP]), and pioglitazone significantly attenuated inflammation and ER stress in lipopolysaccharide- or tunicamycin-treated MIN6 cells. The protective effect of pioglitazone was also tested in pancreatic islets from high-fat-fed KK-Ay mice administered 0.02% (wt/wt) pioglitazone or vehicle for 6 weeks. Pioglitazone remarkably reduced the expression of ATF6α, GRP78, and monocyte chemoattractant protein-1, prevented α-cell infiltration into the pancreatic islets, and upregulated glucose transporter 2 (Glut2) expression in β-cells. Moreover, the preservation of β-cells by pioglitazone was accompanied by a significant reduction of blood glucose levels.

Conclusion

Altogether, these results support the proposal that PPARγ agonists not only suppress insulin resistance, but also prevent β-cell impairment via protection against ER stress and inflammation. The activation of PPARγ might be a new therapeutic approach for improving β-cell survival and insulin secretion in patients with diabetes mellitus

Citations

Citations to this article as recorded by  
  • Nr1h4 and Thrb ameliorate ER stress and provide protection in the MPTP mouse model of Parkinson’s
    Nancy Ahuja, Shalini Gupta, Rashmi Arora, Ella Bhagyaraj, Drishti Tiwari, Sumit Kumar, Pawan Gupta
    Life Science Alliance.2024; 7(7): e202302416.     CrossRef
  • Prosthetic vascular grafts engineered to combat calcification: Progress and future directions
    Taylor K. Brown, Sara Alharbi, Karen J. Ho, Bin Jiang
    Biotechnology and Bioengineering.2023; 120(4): 953.     CrossRef
  • Obesity, diabetes mellitus, and cardiometabolic risk: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2023
    Harold Edward Bays, Shagun Bindlish, Tiffany Lowe Clayton
    Obesity Pillars.2023; 5: 100056.     CrossRef
  • Metformin promotes osteogenic differentiation and prevents hyperglycaemia-induced osteoporosis by suppressing PPARγ expression
    Lifeng Zheng, Ximei Shen, Yun Xie, Hong Lian, Sunjie Yan, Shizhong Wang
    Acta Biochimica et Biophysica Sinica.2023; 55(3): 394.     CrossRef
  • Peroxisome proliferator-activated receptors as targets to treat metabolic diseases: Focus on the adipose tissue, liver, and pancreas
    Henrique Souza-Tavares, Carolline Santos Miranda, Isabela Macedo Lopes Vasques-Monteiro, Cristian Sandoval, Daiana Araujo Santana-Oliveira, Flavia Maria Silva-Veiga, Aline Fernandes-da-Silva, Vanessa Souza-Mello
    World Journal of Gastroenterology.2023; 29(26): 4136.     CrossRef
  • Nicotinamide N-methyltransferase upregulation contributes to palmitate-elicited peroxisome proliferator-activated receptor transactivation in hepatocytes
    Qing Song, Jun Wang, Alexandra Griffiths, Samuel Man Lee, Iredia D. Iyamu, Rong Huang, Jose Cordoba-Chacon, Zhenyuan Song
    American Journal of Physiology-Cell Physiology.2023; 325(1): C29.     CrossRef
  • The global perspective on peroxisome proliferator-activated receptor γ (PPARγ) in ectopic fat deposition: A review
    Yanhao Qiu, Mailin Gan, Xingyu Wang, Tianci Liao, Qiuyang Chen, Yuhang Lei, Lei Chen, Jinyong Wang, Ye Zhao, Lili Niu, Yan Wang, Shunhua Zhang, Li Zhu, Linyuan Shen
    International Journal of Biological Macromolecules.2023; 253: 127042.     CrossRef
  • Chemical inducer of regucalcin attenuates lipopolysaccharide‐induced inflammatory responses in pancreatic MIN6 β‐cells and RAW264.7 macrophages
    Tomiyasu Murata, Kazunori Hashimoto, Susumu Kohno, Chiaki Takahashi, Masayoshi Yamaguchi, Chihiro Ito, Itoigawa Masataka, Roji Kojima, Kiyomi Hikita, Norio Kaneda
    FEBS Open Bio.2022; 12(1): 175.     CrossRef
  • Targets for rescue from fatty acid-induced lipotoxicity in pancreatic beta cells
    Seok-Woo Hong, Won-Young Lee
    Cardiovascular Prevention and Pharmacotherapy.2022; 4(2): 57.     CrossRef
  • Analysis of changes in the proteomic profile of porcine corpus luteum during different stages of the oestrous cycle: effects of PPAR gamma ligands
    Zuzanna Kunicka, Karol Mierzejewski, Aleksandra Kurzyńska, Robert Stryiński, Jesús Mateos, Mónica Carrera, Monika Golubska, Iwona Bogacka, Xiaolong Wang
    Reproduction, Fertility and Development.2022; 34(11): 776.     CrossRef
  • Activation of PPARγ Protects Obese Mice from Acute Lung Injury by Inhibiting Endoplasmic Reticulum Stress and Promoting Mitochondrial Biogenesis
    Yin Tang, Ke Wei, Ling Liu, Jingyue Ma, Siqi Wu, Wenjing Tang, Stéphane Mandard
    PPAR Research.2022; 2022: 1.     CrossRef
  • Effect of Pioglitazone on endoplasmic reticulum stress regarding in situ perfusion rat model
    Vivien Telek, Luca Erlitz, Ibitamuno Caleb, Tibor Nagy, Mónika Vecsernyés, Bálint Balogh, György Sétáló, Péter Hardi, Gábor Jancsó, Ildikó Takács
    Clinical Hemorheology and Microcirculation.2021; 79(2): 311.     CrossRef
  • Inflammation in Metabolic Diseases and Insulin Resistance
    Won-Young Lee
    Cardiovascular Prevention and Pharmacotherapy.2021; 3(2): 31.     CrossRef
  • Current Status of Endoplasmic Reticulum Stress in Type II Diabetes
    Sagir Mustapha, Mustapha Mohammed, Ahmad Khusairi Azemi, Abubakar Ibrahim Jatau, Aishatu Shehu, Lukman Mustapha, Ibrahim Muazzamu Aliyu, Rabi’u Nuhu Danraka, Abdulbasit Amin, Auwal Adam Bala, Wan Amir Nizam Wan Ahmad, Aida Hanum Ghulam Rasool, Mohd Rais M
    Molecules.2021; 26(14): 4362.     CrossRef
  • JunD Regulates Pancreatic β-Cells Function by Altering Lipid Accumulation
    Kexin Wang, Yixin Cui, Peng Lin, Zhina Yao, Yu Sun
    Frontiers in Endocrinology.2021;[Epub]     CrossRef
  • Pioglitazone even at low dosage improves NAFLD in type 2 diabetes: clinical and pathophysiological insights from a subgroup of the TOSCA.IT randomised trial
    Giuseppe Della Pepa, Marco Russo, Marilena Vitale, Fabrizia Carli, Claudia Vetrani, Maria Masulli, Gabriele Riccardi, Olga Vaccaro, Amalia Gastaldelli, Angela A. Rivellese, Lutgarda Bozzetto
    Diabetes Research and Clinical Practice.2021; 178: 108984.     CrossRef
  • Radioprotective Effect of Pioglitazone Against Genotoxicity Induced by Ionizing Radiation in Healthy Human Lymphocytes
    Roya Kazemi, Seyed J. Hosseinimehr
    Cardiovascular & Hematological Agents in Medicinal Chemistry .2021; 19(1): 72.     CrossRef
  • Recent Insights Into Mechanisms of β-Cell Lipo- and Glucolipotoxicity in Type 2 Diabetes
    Maria Lytrivi, Anne-Laure Castell, Vincent Poitout, Miriam Cnop
    Journal of Molecular Biology.2020; 432(5): 1514.     CrossRef
  • Artemisinin and dihydroartemisinin promote β-cell apoptosis induced by palmitate via enhancing ER stress
    Ke Chen, Hu Hua, Ziyang Zhu, Tong Wu, Zhanjun Jia, Qianqi Liu
    Apoptosis.2020; 25(3-4): 192.     CrossRef
  • Mechanisms of impaired pancreatic β‑cell function in high‑fat diet‑induced obese mice: The role of endoplasmic reticulum stress
    Xiaoqing Yi, Xuan Cai, Sisi Wang, Yanfeng Xiao
    Molecular Medicine Reports.2020;[Epub]     CrossRef
  • Docosahexaenoic and Eicosapentaenoic Acids Prevent Altered-Muc2 Secretion Induced by Palmitic Acid by Alleviating Endoplasmic Reticulum Stress in LS174T Goblet Cells
    Quentin Escoula, Sandrine Bellenger, Michel Narce, Jérôme Bellenger
    Nutrients.2019; 11(9): 2179.     CrossRef
  • PPAR-γ agonist, pioglitazone, reduced oxidative and endoplasmic reticulum stress associated with L-NAME-induced hypertension in rats
    Eman Soliman, Shereen F. Behairy, Nabila N. El-maraghy, Shimaa M. Elshazly
    Life Sciences.2019; 239: 117047.     CrossRef
  • Changes of MODY signal pathway genes in the endoplasmic reticulum stress in INS-1-3 cells
    Yanan Dong, Shirui Li, Wenhui Zhao, Yanlei Wang, Tingting Ge, Jianzhong Xiao, Yukun Li, Herve Le Stunff
    PLOS ONE.2018; 13(6): e0198614.     CrossRef
Close layer
Obesity and Metabolism
Exendin-4 Inhibits the Expression of SEPP1 and Fetuin-A via Improvement of Palmitic Acid-Induced Endoplasmic Reticulum Stress by AMPK
Jinmi Lee, Seok-Woo Hong, Se Eun Park, Eun-Jung Rhee, Cheol-Young Park, Ki-Won Oh, Sung-Woo Park, Won-Young Lee
Endocrinol Metab. 2015;30(2):177-184.   Published online June 30, 2015
DOI: https://doi.org/10.3803/EnM.2015.30.2.177
  • 4,510 View
  • 45 Download
  • 12 Web of Science
  • 10 Crossref
AbstractAbstract PDFPubReader   
Background

Selenoprotein P (SEPP1) and fetuin-A, both circulating liver-derived glycoproteins, are novel biomarkers for insulin resistance and nonalcoholic fatty liver disease. However, the effect of exendin-4 (Ex-4), a glucagon-like peptide-1 receptor agonist, on the expression of hepatokines, SEPP1, and fetuin-A, is unknown.

Methods

The human hepatoma cell line HepG2 was treated with palmitic acid (PA; 0.4 mM) and tunicamycin (tuni; 2ug/ml) with or without exendin-4 (100 nM) for 24 hours. The change in expression of PA-induced SEPP1, fetuin-A, and endoplasmic reticulum (ER) stress markers by exendin-4 treatment were evaluated using quantitative real-time reverse transcription polymerase chain reaction and Western blotting. Transfection of cells with AMP-activated protein kinase (AMPK) small interfering RNA (siRNA) was performed to establish the effect of exendin-4-mediated AMPK in the regulation of SEPP1 and fetuin-A expression.

Results

Exendin-4 reduced the expression of SEPP1, fetuin-A, and ER stress markers including PKR-like ER kinase, inositol-requiring kinase 1α, activating transcription factor 6, and C/EBP homologous protein in HepG2 cells. Exendin-4 also reduced the expression of SEPP1 and fetuin-A in cells treated with tunicamycin, an ER stress inducer. In cells treated with the AMPK activator 5-aminoidazole-4-carboxamide ribonucleotide (AICAR), the expression of hepatic SEPP1 and fetuin-A were negatively related by AMPK, which is the target of exendin-4. In addition, exendin-4 treatment did not decrease SEPP1 and fetuin-A expression in cells transfected with AMPK siRNA.

Conclusion

These data suggest that exendin-4 can attenuate the expression of hepatic SEPP1 and fetuin-A via improvement of PA-induced ER stress by AMPK.

Citations

Citations to this article as recorded by  
  • Maternal Organic Selenium Supplementation Relieves Intestinal Endoplasmic Reticulum Stress in Piglets by Enhancing the Expression of Glutathione Peroxidase 4 and Selenoprotein S
    Dajiang Ding, Daolin Mou, Heng Zhu, Xuemei Jiang, Lianqiang Che, Zhengfeng Fang, Shengyu Xu, Yan Lin, Yong Zhuo, Jian Li, Chao Huang, Yuanfeng Zou, Lixia Li, De Wu, Bin Feng
    Frontiers in Nutrition.2022;[Epub]     CrossRef
  • Alliin, capsaicin, and gingerol attenuate endoplasmic reticulum stress-induced hepatic steatosis in HepG2 cells and C57BL/6N mice
    Ye-Rang Yun, Ji-Eun Lee
    Journal of Functional Foods.2022; 95: 105186.     CrossRef
  • PNPLA3 I148M is involved in the variability in anti-NAFLD response to exenatide
    Yunzhi Chen, Xuemei Yan, Xiao Xu, Shuhua Yuan, Fen Xu, Hua Liang
    Endocrine.2020; 70(3): 517.     CrossRef
  • Green tea extracts reduce leukocyte cell–Derived chemotaxin 2 and selenoprotein P levels in the livers of C57BL/6J mice fed a high-fat diet
    Shintaro Onishi, Hidefumi Kitazawa, Shinichi Meguro, Ichiro Tokimitsu
    Bioscience, Biotechnology, and Biochemistry.2018; 82(9): 1568.     CrossRef
  • Melatonin improves insulin resistance and hepatic steatosis through attenuation of alpha‐2‐HS‐glycoprotein
    Jee‐In Heo, Dae Wui Yoon, Ji Hee Yu, Nam Hoon Kim, Hye Jin Yoo, Ji A. Seo, Sin Gon Kim, Kyung Mook Choi, Sei Hyun Baik, Dong Seop Choi, Nan Hee Kim
    Journal of Pineal Research.2018;[Epub]     CrossRef
  • Palmitic acid induces ceramide accumulation, mitochondrial protein hyperacetylation, and mitochondrial dysfunction in porcine oocytes†
    Nobuhiko Itami, Koumei Shirasuna, Takehito Kuwayama, Hisataka Iwata
    Biology of Reproduction.2018; 98(5): 644.     CrossRef
  • Astragaloside IV attenuates free fatty acid-induced ER stress and lipid accumulation in hepatocytes via AMPK activation
    Bing Zhou, Dan-li Zhou, Xiao-hong Wei, Rong-yu Zhong, Jie Xu, Liao Sun
    Acta Pharmacologica Sinica.2017; 38(7): 998.     CrossRef
  • New Potential Targets of Glucagon-Like Peptide 1 Receptor Agonists in Pancreatic β-Cells and Hepatocytes
    Won-Young Lee
    Endocrinology and Metabolism.2017; 32(1): 1.     CrossRef
  • Selenoprotein P neutralizes lipopolysaccharide and participates in hepatic cell endoplasmic reticulum stress response
    Yongzhong Zhao, Shuvojit Banerjee, Ping Huang, Xinning Wang, Candece L. Gladson, Warren D. Heston, Charles B. Foster
    FEBS Letters.2016; 590(24): 4519.     CrossRef
  • Novel phenotypes of prediabetes?
    Hans-Ulrich Häring
    Diabetologia.2016; 59(9): 1806.     CrossRef
Close layer

Endocrinol Metab : Endocrinology and Metabolism