Skip Navigation
Skip to contents

Endocrinol Metab : Endocrinology and Metabolism

clarivate
OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "Beta cell"
Filter
Filter
Article type
Keywords
Publication year
Authors
Original Article
Endocrine Research
Omega-3 Polyunsaturated Fatty Acids May Attenuate Streptozotocin-Induced Pancreatic β-Cell Death via Autophagy Activation in Fat1 Transgenic Mice
Won-Min Hwang, Dong-Ho Bak, Dong Ho Kim, Ju Young Hong, Seung-Yun Han, Keun-Young Park, Kyu Lim, Dong-Mee Lim, Jae Gu Kang
Endocrinol Metab. 2015;30(4):569-575.   Published online December 31, 2015
DOI: https://doi.org/10.3803/EnM.2015.30.4.569
  • 4,184 View
  • 43 Download
  • 17 Web of Science
  • 19 Crossref
AbstractAbstract PDFPubReader   
Background

Inflammatory factors and β-cell dysfunction due to high-fat diets aggravate chronic diseases and their complications. However, omega-3 dietary fats have anti-inflammatory effects, and the involvement of autophagy in the etiology of diabetes has been reported. Therefore, we examined the protective effects of autophagy on diabetes using fat-1 transgenic mice with omega-3 self-synthesis capability.

Methods

Streptozotocin (STZ) administration induced β-cell dysfunction in mice; blood glucose levels and water consumption were subsequently measured. Using hematoxylin and eosin (H&E) and Masson's trichrome staining, we quantitatively assessed STZ-induced changes in the number, mass, and fibrosis of pancreatic islets in fat-1 and control mice. We identified the microtubule-associated protein 1A/1B light chain 3-immunoreactive puncta in β-cells and quantified p62 levels in the pancreas of fat-1 and control mice.

Results

STZ-induced diabetic phenotypes, including hyperglycemia and polydipsia, were attenuated in fat-1 mice. Histological determination using H&E and Masson's trichrome staining revealed the protective effects of the fat-1 expression on cell death and the scarring of pancreatic islets after STZ injection. In the β-cells of control mice, autophagy was abruptly activated after STZ treatment. Basal autophagy levels were elevated in fat-1 mice β-cells, and this persisted after STZ treatment. Together with autophagosome detection, these results revealed that n-3 polyunsaturated fatty acid (PUFA) enrichment might partly prevent the STZ-related pancreatic islet damage by upregulating the basal activity of autophagy and improving autophagic flux disturbance.

Conclusion

Fat-1 transgenic mice with a n-3 PUFA self-synthesis capability exert protective effects against STZ-induced β-cell death by activating autophagy in β-cells.

Citations

Citations to this article as recorded by  
  • Mitochondrial Dysfunction and Mitophagy in Type 2 Diabetes: Pathophysiology and Therapeutic Targets
    Nadezda Apostolova, Teresa Vezza, Jordi Muntane, Milagros Rocha, Víctor M. Víctor
    Antioxidants & Redox Signaling.2023; 39(4-6): 278.     CrossRef
  • β Cell and Autophagy: What Do We Know?
    Hamid-Reza Mohammadi-Motlagh, Mona Sadeghalvad, Niloofar Yavari, Rosita Primavera, Setareh Soltani, Shashank Chetty, Abantika Ganguly, Shobha Regmi, Tina Fløyel, Simranjeet Kaur, Aashiq H. Mirza, Avnesh S. Thakor, Flemming Pociot, Reza Yarani
    Biomolecules.2023; 13(4): 649.     CrossRef
  • The ameliorating effects of mesenchymal stem cells compared to α‐tocopherol on apoptosis and autophagy in streptozotocin‐induced diabetic rats: Implication of PI3K/Akt signaling pathway and entero‐insular axis
    Heba A. Mubarak, Manal M. Kamal, Yossra Mahmoud, Fatma S. Abd‐Elsamea, Eman Abdelbary, Marwa G. Gamea, Reham I. El‐Mahdy
    Journal of Cellular Biochemistry.2023; 124(11): 1705.     CrossRef
  • Nutraceuticals as Modulators of Autophagy: Relevance in Parkinson’s Disease
    Michał Rakowski, Szymon Porębski, Agnieszka Grzelak
    International Journal of Molecular Sciences.2022; 23(7): 3625.     CrossRef
  • High n-3 fatty acids counteract hyperglycemia-induced insulin resistance in fat-1 mice via pre-adipocyte NLRP3 inflammasome inhibition
    Qingyao Yu, Tiantian Wang, Feng Wang, Yong Yang, Canxia He, Wenge Yang, JinJie Zhang, Zuquan Zou
    Food & Function.2021; 12(1): 230.     CrossRef
  • Metabolic and Metabolomic Insights Regarding the Omega-3 PUFAs Intake in Type 1 Diabetes Mellitus
    Carmen Purdel, Anca Ungurianu, Denisa Margina
    Frontiers in Molecular Biosciences.2021;[Epub]     CrossRef
  • Effects of the linoleic acid/docosahexaenoic acid ratio and concentration inducing autophagy in Raw264.7 cells against Staphylococcus aureus
    Li-Ying Xu, Min Mu, Man-Li Wang, Jin-Cheng Liu, Yuan-Jie Zhou, Jing Wu, Bing-You Jiang, Ming-Gong Chen, Dong Hu, Xing-Rong Tao
    Journal of Clinical Biochemistry and Nutrition.2020; 67(2): 146.     CrossRef
  • Free fatty acid receptor 3 differentially contributes to β-cell compensation under high-fat diet and streptozotocin stress
    Medha Priyadarshini, Connor Cole, Gautham Oroskar, Anton E. Ludvik, Barton Wicksteed, Congcong He, Brian T. Layden
    American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.2020; 318(4): R691.     CrossRef
  • Mitochondria and T2D: Role of Autophagy, ER Stress, and Inflammasome
    Milagros Rocha, Nadezda Apostolova, Ruben Diaz-Rua, Jordi Muntane, Victor M. Victor
    Trends in Endocrinology & Metabolism.2020; 31(10): 725.     CrossRef
  • Omega-3 Polyunsaturated Fatty Acids Prevent Toxoplasma gondii Infection by Inducing Autophagy via AMPK Activation
    Choi, Lee, Lee, Park, Lee, Shin, Cha, Lee, Lim, Yuk
    Nutrients.2019; 11(9): 2137.     CrossRef
  • Survivin regulated by autophagy mediates hyperglycemia-induced vascular endothelial cell dysfunction
    Yu-Xue Xu, Caoxin Huang, Minyi Liu, Ningning Chen, Wenting Chen, Chen Yang, Yan Zhao, Xuejun Li, Junguo Duan, Suhuan Liu, Shuyu Yang
    Experimental Cell Research.2018; 364(2): 152.     CrossRef
  • Autophagy in Metabolic Age-Related Human Diseases
    Manon Moulis, Cecile Vindis
    Cells.2018; 7(10): 149.     CrossRef
  • A comparison of the anti-diabetic potential of d-ribose-l-cysteine with insulin, and oral hypoglycaemic agents on pregnant rats
    Abraham A.A. Osinubi, Leke Jacob Medubi, Edidiong N. Akang, Lawal K. Sodiq, Titilola A. Samuel, Taiwo Kusemiju, James Osolu, Danladi Madu, Olufemi Fasanmade
    Toxicology Reports.2018; 5: 832.     CrossRef
  • β-Cell Autophagy in Diabetes Pathogenesis
    Michelle R Marasco, Amelia K Linnemann
    Endocrinology.2018; 159(5): 2127.     CrossRef
  • Endogenous synthesis of n-3 polyunsaturated fatty acids in fat-1 transgenic mice ameliorates streptozocin-induced diabetic nephropathy
    Yuan-Ming Zhang, Xiao-Hong Zhang, Pan Zhu, Rong-Hui Tan, Jin-Shun Zhao, Feng Wang, Jin-Jie Zhang, Wang Yan, Yang Xi, Jian-Bo Wan, Jing-Xuan Kang, Zu-Quan Zou, Shi-Zhong Bu
    Journal of Functional Foods.2018; 45: 427.     CrossRef
  • PHLPP: a putative cellular target during insulin resistance and type 2 diabetes
    Alpana Mathur, Vivek Kumar Pandey, Poonam Kakkar
    Journal of Endocrinology.2017; 233(3): R185.     CrossRef
  • Coenzyme Q10 ameliorates cerebral ischemia reperfusion injury in hyperglycemic rats
    Cui-Jie Lu, Yong-Zhen Guo, Yang Zhang, Lan Yang, Yue Chang, Jing-Wen Zhang, Li Jing, Jian-Zhong Zhang
    Pathology - Research and Practice.2017; 213(9): 1191.     CrossRef
  • Changes in pancreatic histology, insulin secretion and oxidative status in diabetic rats following treatment with Ficus deltoidea and vitexin
    Samsulrizal Nurdiana, Yong Meng Goh, Hafandi Ahmad, Sulaiman Md Dom, Nur Syimal’ain Azmi, Noor Syaffinaz Noor Mohamad Zin, Mahdi Ebrahimi
    BMC Complementary and Alternative Medicine.2017;[Epub]     CrossRef
  • Comparative analysis of the efficacy of omega-3 fatty acids for hypertriglyceridaemia management in Korea
    H.-S. Kim, H. Kim, Y. J. Jeong, S. J. Yang, S. J. Baik, H. Lee, S.-H. Lee, J. H. Cho, I.-Y. Choi, H. W. Yim, K.-H. Yoon
    Journal of Clinical Pharmacy and Therapeutics.2016; 41(5): 508.     CrossRef
Close layer
Brief Report
Obesity and Metabolism
Glucagon-Like Peptide-1 Increases Mitochondrial Biogenesis and Function in INS-1 Rat Insulinoma Cells
Mi Yeon Kang, Tae Jung Oh, Young Min Cho
Endocrinol Metab. 2015;30(2):216-220.   Published online June 30, 2015
DOI: https://doi.org/10.3803/EnM.2015.30.2.216
  • 4,127 View
  • 45 Download
  • 42 Web of Science
  • 41 Crossref
AbstractAbstract PDFPubReader   

Glucagon-like peptide-1 (GLP-1) is a gut-derived incretin hormone that increases glucose-stimulated insulin secretion in pancreatic β-cells. Since mitochondrial function is crucial to insulin secretion, we hypothesized that GLP-1 may increase mitochondrial biogenesis in pancreatic β-cells. We treated INS-1 rat insulinoma cells with GLP-1 or exendin-4 for 48 hours and measured mitochondrial mass and function. Both GLP-1 and exendin-4 increased mitochondrial mass by approximately 20%. The mitochondria/cytosol ratio was increased from 7.60±3.12% to 10.53±2.70% by exendin-4. In addition, GLP-1 increased the mitochondrial membrane potential and oxygen consumption. Proliferator-activated receptor-gamma coactivator 1α expression was increased approximately 2-fold by GLP-1 treatment. In conclusion, the present study presents evidence for a new mechanism of action by which GLP-1 improves pancreatic β-cell function via enhanced mitochondrial mass and performance.

Citations

Citations to this article as recorded by  
  • New fraternine analogues: Evaluation of the antiparkinsonian effect in the model of Parkinson's disease
    Andréia Biolchi Mayer, Henrique de Oliveira Amaral, Danilo Gustavo R. de Oliveira, Gabriel Avohay Alves Campos, Priscilla Galante Ribeiro, Solange Cristina Rego Fernandes, Adolfo Carlos Barros de Souza, Raffael Júnio Araújo de Castro, Anamélia Lorenzetti
    Neuropeptides.2024; 103: 102390.     CrossRef
  • Prospects of antidiabetic drugs in the treatment of neurodegenerative disease
    Lidan Hu, Wenmin Wang, Xiangjun Chen, Guannan Bai, Liangjian Ma, Xin Yang, Qiang Shu, Xuekun Li
    Brain‐X.2024;[Epub]     CrossRef
  • Attenuating mitochondrial dysfunction and morphological disruption with PT320 delays dopamine degeneration in MitoPark mice
    Vicki Wang, Kuan-Yin Tseng, Tung-Tai Kuo, Eagle Yi-Kung Huang, Kuo-Lun Lan, Zi-Rong Chen, Kuo-Hsing Ma, Nigel H. Greig, Jin Jung, Ho-II Choi, Lars Olson, Barry J. Hoffer, Yuan-Hao Chen
    Journal of Biomedical Science.2024;[Epub]     CrossRef
  • Targeting GLP-1 receptors to reduce nicotine use disorder: Preclinical and clinical evidence
    Rae J. Herman, Heath D. Schmidt
    Physiology & Behavior.2024; 281: 114565.     CrossRef
  • Liraglutide demonstrates a therapeutic effect on mitochondrial dysfunction in human SGBS adipocytes in vitro
    Maija Vaittinen, Mariana Ilha, Elena Herbers, Anita Wagner, Kirsi A. Virtanen, Kirsi H. Pietiläinen, Eija Pirinen, Jussi Pihlajamäki
    Diabetes Research and Clinical Practice.2023; 199: 110635.     CrossRef
  • The cardioprotective effect of human glucagon‐like peptide‐1 receptor agonist (semaglutide) on cisplatin‐induced cardiotoxicity in rats: Targeting mitochondrial functions, dynamics, biogenesis, and redox status pathways
    Marwa Mohamed Atef, Yasser Mostafa Hafez, Omnia Safwat El‐Deeb, Eman H. Basha, Radwa Ismail, Hanan Alshenawy, Rasha Osama El‐Esawy, Amira Kamel Eltokhy
    Cell Biochemistry and Function.2023; 41(4): 450.     CrossRef
  • Targeting mitochondrial quality control for diabetic cardiomyopathy: Therapeutic potential of hypoglycemic drugs
    Yutong Zhou, Wendong Suo, Xinai Zhang, Jiaojiao Liang, Weizhe Zhao, Yue Wang, Hong Li, Qing Ni
    Biomedicine & Pharmacotherapy.2023; 168: 115669.     CrossRef
  • Soft X-ray tomography to map and quantify organelle interactions at the mesoscale
    Valentina Loconte, Jitin Singla, Angdi Li, Jian-Hua Chen, Axel Ekman, Gerry McDermott, Andrej Sali, Mark Le Gros, Kate L. White, Carolyn A. Larabell
    Structure.2022; 30(4): 510.     CrossRef
  • Comparisons of pleiotropic effects of SGLT2 inhibition and GLP-1 agonism on cardiac glucose intolerance in heart dysfunction
    Belma Turan, Aysegul Durak, Yusuf Olgar, Erkan Tuncay
    Molecular and Cellular Biochemistry.2022; 477(11): 2609.     CrossRef
  • Modulation of Reactive Oxygen Species Homeostasis as a Pleiotropic Effect of Commonly Used Drugs
    Carolin Thomas, Lia Wurzer, Ernst Malle, Michael Ristow, Corina T. Madreiter-Sokolowski
    Frontiers in Aging.2022;[Epub]     CrossRef
  • Anti-cancer effects of sitagliptin, vildagliptin, and exendin-4 on triple-negative breast cancer cells via mitochondrial modulation
    POOJA JAISWAL, VERSHA TRIPATHI, ANSHUL ASSAIYA, DHARMENDRA KASHYAP, RAHUL DUBEY, ANAMIKA SINGH, JANESH KUMAR, HEM CHANDRA JHA, RAJESH SHARMA, AMIT KUMAR DIXIT, HAMENDRA SINGH PARMAR
    BIOCELL.2022; 46(12): 2645.     CrossRef
  • Effect of liraglutide on neural and peripheral markers of metabolic function during antipsychotic treatment in rats
    Ilijana Babic, Dominic Sellers, Paul L Else, Jessica Nealon, Ashleigh L Osborne, Nagesh Pai, Katrina Weston-Green
    Journal of Psychopharmacology.2021; 35(3): 284.     CrossRef
  • Sustained Release GLP-1 Agonist PT320 Delays Disease Progression in a Mouse Model of Parkinson’s Disease
    Vicki Wang, Tung-Tai Kuo, Eagle Yi-Kung Huang, Kuo-Hsing Ma, Yu-Ching Chou, Zhao-Yang Fu, Li-Wen Lai, Jin Jung, Hoi-II Choi, Doo-Sup Choi, Yazhou Li, Lars Olson, Nigel H. Greig, Barry J. Hoffer, Yuan-Hao Chen
    ACS Pharmacology & Translational Science.2021; 4(2): 858.     CrossRef
  • Antioxidative Potentials of Incretin-Based Medications: A Review of Molecular Mechanisms
    Habib Yaribeygi, Mina Maleki, Thozhukat Sathyapalan, Tannaz Jamialahmadi, Amirhossein Sahebkar, Marina Sokovi
    Oxidative Medicine and Cellular Longevity.2021; 2021: 1.     CrossRef
  • Vernicia fordii (Hemsl.) Airy Shaw extract stimulates insulin secretion in pancreatic β-cells and improves insulin sensitivity in diabetic mice
    Jimin Hyun, Mi Hyeon Park, Yo Han Lee, Youngeun Lee, Su Ji Jeong, Sun Sil Choi, Keon Woo Khim, Hye Jin Eom, Jin-Hoe Hur, Chan Young Park, Jae-Ick Kim, Jiyoung Park, Hyung Won Ryu, Hyun-Jun Jang, Sei-Ryang Oh, Jang Hyun Choi
    Journal of Ethnopharmacology.2021; 278: 114238.     CrossRef
  • Connecting the dots between mitochondrial dysfunction and Parkinson’s disorder: focus mitochondria-targeting therapeutic paradigm in mitigating the disease severity
    Ishnoor Kaur, Tapan Behl, Aayush Sehgal, Sukhbir Singh, Neelam Sharma, Lotfi Aleya, Simona Bungau
    Environmental Science and Pollution Research.2021; 28(28): 37060.     CrossRef
  • Neuromodulatory effects of anti-diabetes medications: A mechanistic review
    Habib Yaribeygi, Milad Ashrafizadeh, Neil C. Henney, Thozhukat Sathyapalan, Tannaz Jamialahmadi, Amirhossein Sahebkar
    Pharmacological Research.2020; 152: 104611.     CrossRef
  • Antidiabetic Agents for Treatment of Parkinson’s Disease: A Meta-Analysis
    Shu-Yi Wang, Shey-Lin Wu, Ta-Cheng Chen, Chieh-Sen Chuang
    International Journal of Environmental Research and Public Health.2020; 17(13): 4805.     CrossRef
  • Visualizing subcellular rearrangements in intact β cells using soft x-ray tomography
    Kate L. White, Jitin Singla, Valentina Loconte, Jian-Hua Chen, Axel Ekman, Liping Sun, Xianjun Zhang, John Paul Francis, Angdi Li, Wen Lin, Kaylee Tseng, Gerry McDermott, Frank Alber, Andrej Sali, Carolyn Larabell, Raymond C. Stevens
    Science Advances.2020;[Epub]     CrossRef
  • Nutrient Sensor mTOR and OGT: Orchestrators of Organelle Homeostasis in Pancreatic β-Cells
    Nicholas Esch, Seokwon Jo, Mackenzie Moore, Emilyn U. Alejandro, Yingke Xu
    Journal of Diabetes Research.2020; 2020: 1.     CrossRef
  • Metabolic dynamics of human Sertoli cells are differentially modulated by physiological and pharmacological concentrations of GLP-1
    Ana D. Martins, Mariana P. Monteiro, Branca M. Silva, Alberto Barros, Mário Sousa, Rui A. Carvalho, Pedro F. Oliveira, Marco G. Alves
    Toxicology and Applied Pharmacology.2019; 362: 1.     CrossRef
  • Sarcopenia in Chronic Kidney Disease: Factors, Mechanisms, and Therapeutic Interventions
    Hiroshi Watanabe, Yuki Enoki, Toru Maruyama
    Biological and Pharmaceutical Bulletin.2019; 42(9): 1437.     CrossRef
  • Recent Advances in Drug Repurposing for Parkinson’s Disease
    Xin Chen, Giuseppe Gumina, Kristopher G. Virga
    Current Medicinal Chemistry.2019; 26(28): 5340.     CrossRef
  • Mitochondrial dysfunction in diabetes and the regulatory roles of antidiabetic agents on the mitochondrial function
    Habib Yaribeygi, Stephen L. Atkin, Amirhossein Sahebkar
    Journal of Cellular Physiology.2019; 234(6): 8402.     CrossRef
  • Liraglutide protects against glucolipotoxicity‐induced RIN‐m5F β‐cell apoptosis through restoration of PDX1 expression
    Edy Kornelius, Hsin‐Hua Li, Chiung‐Huei Peng, Yi‐Sun Yang, Wei‐Jen Chen, Yan‐Zin Chang, Yi‐Chiao Bai, Stanley Liu, Chien‐Ning Huang, Chih‐Li Lin
    Journal of Cellular and Molecular Medicine.2019; 23(1): 619.     CrossRef
  • The osteogenic effect of liraglutide involves enhanced mitochondrial biogenesis in osteoblasts
    Subhashis Pal, Shailendra K. Maurya, Sourav Chattopadhyay, Shyamsundar Pal China, Konica Porwal, Chirag Kulkarni, Sabyasachi Sanyal, Rohit A. Sinha, Naibedya Chattopadhyay
    Biochemical Pharmacology.2019; 164: 34.     CrossRef
  • Novel Treatment Opportunities Against Cognitive Impairment in Parkinson’s Disease with an Emphasis on Diabetes-Related Pathways
    Holly Green, Panagiota Tsitsi, Ioanna Markaki, Dag Aarsland, Per Svenningsson
    CNS Drugs.2019; 33(2): 143.     CrossRef
  • Mitral cells and the glucagon‐like peptide 1 receptor: The sweet smell of success?
    Enrico Bagnoli, Una FitzGerald
    European Journal of Neuroscience.2019; 49(4): 422.     CrossRef
  • Targeting the DPP-4-GLP-1 pathway improves exercise tolerance in heart failure patients: a systematic review and meta-analysis
    Chengcong Chen, Ying Huang, Yongmei Zeng, Xiyan Lu, Guoqing Dong
    BMC Cardiovascular Disorders.2019;[Epub]     CrossRef
  • Acute exposure to 3‑deoxyglucosone at high glucose levels impairs insulin secretion from β‑cells by downregulating the sweet taste receptor signaling pathway
    Xiudao Song, Guoqiang Liang, Min Shi, Liang Zhou, Fei Wang, Lurong Zhang, Fei Huang, Guorong Jiang
    Molecular Medicine Reports.2019;[Epub]     CrossRef
  • Translational approaches to restoring mitochondrial function in Parkinson's disease
    Heather Mortiboys, Ruby Macdonald, Thomas Payne, Matilde Sassani, Thomas Jenkins, Oliver Bandmann
    FEBS Letters.2018; 592(5): 776.     CrossRef
  • Neuroprotective exendin-4 enhances hypothermia therapy in a model of hypoxic-ischaemic encephalopathy
    Eridan Rocha-Ferreira, Laura Poupon, Aura Zelco, Anna-Lena Leverin, Syam Nair, Andrea Jonsdotter, Ylva Carlsson, Claire Thornton, Henrik Hagberg, Ahad A Rahim
    Brain.2018; 141(10): 2925.     CrossRef
  • Current perspective of mitochondrial biology in Parkinson's disease
    Navneet Ammal Kaidery, Bobby Thomas
    Neurochemistry International.2018; 117: 91.     CrossRef
  • Humanin promotes mitochondrial biogenesis in pancreatic MIN6 β-cells
    Qingqing Qin, Jieqiong Jin, Fang He, Yongqin Zheng, Tingting Li, Yun Zhang, Jundong He
    Biochemical and Biophysical Research Communications.2018; 497(1): 292.     CrossRef
  • Exenatide once weekly versus placebo in Parkinson's disease: a randomised, double-blind, placebo-controlled trial
    Dilan Athauda, Kate Maclagan, Simon S Skene, Martha Bajwa-Joseph, Dawn Letchford, Kashfia Chowdhury, Steve Hibbert, Natalia Budnik, Luca Zampedri, John Dickson, Yazhou Li, Iciar Aviles-Olmos, Thomas T Warner, Patricia Limousin, Andrew J Lees, Nigel H Grei
    The Lancet.2017; 390(10103): 1664.     CrossRef
  • Alogliptin, a Dipeptidyl Peptidase‐4 Inhibitor, Alleviates Atrial Remodeling and Improves Mitochondrial Function and Biogenesis in Diabetic Rabbits
    Xiaowei Zhang, Zhiwei Zhang, Yungang Zhao, Ning Jiang, Jiuchun Qiu, Yajuan Yang, Jian Li, Xue Liang, Xinghua Wang, Gary Tse, Guangping Li, Tong Liu
    Journal of the American Heart Association.2017;[Epub]     CrossRef
  • Potential therapeutic interventions for chronic kidney disease‐associated sarcopenia via indoxyl sulfate‐induced mitochondrial dysfunction
    Yuki Enoki, Hiroshi Watanabe, Riho Arake, Rui Fujimura, Kana Ishiodori, Tadashi Imafuku, Kento Nishida, Ryusei Sugimoto, Saori Nagao, Shigeyuki Miyamura, Yu Ishima, Motoko Tanaka, Kazutaka Matsushita, Hirotaka Komaba, Masafumi Fukagawa, Masaki Otagiri, To
    Journal of Cachexia, Sarcopenia and Muscle.2017; 8(5): 735.     CrossRef
  • The pancreas: Bandmaster of glucose homeostasis
    Nathalie Jouvet, Jennifer L. Estall
    Experimental Cell Research.2017; 360(1): 19.     CrossRef
  • The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson's disease: mechanisms of action
    Dilan Athauda, Thomas Foltynie
    Drug Discovery Today.2016; 21(5): 802.     CrossRef
  • Effects of addition of a dipeptidyl peptidase IV inhibitor to metformin on sirolimus-induced diabetes mellitus
    Long Jin, Sun Woo Lim, Jian Jin, Byung Ha Chung, Chul Woo Yang
    Translational Research.2016; 174: 122.     CrossRef
  • Pharmacological Modulators of Endoplasmic Reticulum Stress in Metabolic Diseases
    Tae Jung, Kyung Choi
    International Journal of Molecular Sciences.2016; 17(2): 192.     CrossRef
Close layer
Original Article
GLP-1 Can Protect Proinflammatory Cytokines Induced Beta Cell Apoptosis through the Ubiquitination.
Dong Mee Lim, Ju Young Kim, Kang Woo Lee, Keun Young Park, Byung Joon Kim
Endocrinol Metab. 2011;26(2):142-149.   Published online June 1, 2011
DOI: https://doi.org/10.3803/EnM.2011.26.2.142
  • 1,637 View
  • 19 Download
AbstractAbstract PDF
BACKGROUND
Proinflammatory cytokines are one of the causes of diabetes mellitus. However, the exact molecular mechanism by which proinflammatory cytokines induce beta-cell death remains to be clearly elucidated. Glucagon-like peptide-1 (GLP-1) affects the stimulation of insulin secretion and the preservation of beta-cells. Additionally, it may exert an antiapoptotic effect on beta cells; however, the mechanism underlying this effect has yet to be demonstrated. Therefore, we investigated the protective effects of GLP-1 in endoplasmic reticulum (ER)-mediated beta-cell apoptosis using proinflammatory cytokines. METHODS: To induce ER stress, hamster insulin-secreting tumor (HIT)-T15 cells were treated using a mixture of cytokines. Apoptosis was evaluated via MTT assay, Hoechst 33342 staining, and annexin/propidium iodide (PI) flow cytometry. The mRNA and protein expression levels of ER stress-related molecules were determined via PCR and Western blotting, respectively. Nitric oxide was measured with Griess reagent. The levels of inducible nitric oxide synthase (iNOS) mRNA and protein were analyzed via real-time PCR and Western blot, respectively. iNOS protein degradation was evaluated via immunoprecipitation. We pretreated HIT-T15 cells with exendin (Ex)-4 for 1 hour prior to the induction of stress. RESULTS: We determined that Ex-4 exerted a protective effect through nitric oxide and the modulation of ER stress-related molecules (glucose-regulated protein [GRP]78, GRP94, and CCAAT/enhancer-binding protein homologous protein [CHOP]) and that Ex-4 stimulates iNOS protein degradation via the ubiquitination pathway. Additionally, Ex-4 also induced the recovery of insulin2 mRNA expression in beta cells. CONCLUSION: The results of this study indicate that GLP-1 may protect beta cells against apoptosis through the ubiquitination pathway.
Close layer

Endocrinol Metab : Endocrinology and Metabolism