1. Kim B. Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid 2008;18:141-4.
[CROSSREF] [PUBMED]
2. Greenlund LJ, Nair KS, Brennan MD. Changes in body composition in women following treatment of overt and subclinical hyperthyroidism. Endocr Pract 2008;14:973-8.
[CROSSREF] [PUBMED]
3. Lee JC, Song BS, Kang YM, Kim YR, Kang YE, Lee JH, et al. Effect of thyroid-stimulating hormone suppression on muscle function after total thyroidectomy in patients with thyroid cancer. Front Endocrinol (Lausanne) 2021;12:769074.
[CROSSREF] [PUBMED] [PMC]
4. Brent GA. Clinical practice: Graves’ disease. N Engl J Med 2008;358:2594-605.
[CROSSREF] [PUBMED]
5. Song E, Koo MJ, Noh E, Hwang SY, Park MJ, Kim JA, et al. Risk of diabetes in patients with long-standing Graves’ disease: a longitudinal study. Endocrinol Metab (Seoul) 2021;36:1277-86.
[CROSSREF] [PUBMED] [PMC] [PDF]
6. Eom YS, Wilson JR, Bernet VJ. Links between thyroid disorders and glucose homeostasis. Diabetes Metab J 2022;46:239-56.
[CROSSREF] [PUBMED] [PMC] [PDF]
7. Mynatt RL, Park EA, Thorngate FE, Das HK, Cook GA. Changes in carnitine palmitoyltransferase-I mRNA abundance produced by hyperthyroidism and hypothyroidism parallel changes in activity. Biochem Biophys Res Commun 1994;201:932-7.
[CROSSREF] [PUBMED]
8. Goglia F, Moreno M, Lanni A. Action of thyroid hormones at the cellular level: the mitochondrial target. FEBS Lett 1999;452:115-20.
[CROSSREF] [PUBMED] [PDF]
9. Al-Majdoub M, Lantz M, Spegel P. Treatment of Swedish patients with Graves’ hyperthyroidism is associated with changes in acylcarnitine levels. Thyroid 2017;27:1109-17.
[CROSSREF] [PUBMED]
10. Song J, Shan Z, Mao J, Teng W. Serum polyamine metabolic profile in autoimmune thyroid disease patients. Clin Endocrinol (Oxf) 2019;90:727-36.
[CROSSREF] [PUBMED] [PDF]
11. Liu J, Fu J, Jia Y, Yang N, Li J, Wang G. Serum metabolomic patterns in patients with autoimmune thyroid disease. Endocr Pract 2020;26:82-96.
[CROSSREF] [PUBMED]
12. Xia Q, Qian W, Chen L, Chen X, Xie R, Zhang D, et al. Comprehensive metabolomics study in children with Graves’ disease. Front Endocrinol (Lausanne) 2021;12:752496.
[CROSSREF] [PUBMED] [PMC]
13. Timmerman KL, Volpi E. Amino acid metabolism and regulatory effects in aging. Curr Opin Clin Nutr Metab Care 2008;11:45-9.
[CROSSREF] [PUBMED] [PMC]
14. Setoyama D, Lee HY, Moon JS, Tian J, Kang YE, Lee JH, et al. Immunometabolic signatures predict recovery from thyrotoxic myopathy in patients with Graves’ disease. J Cachexia Sarcopenia Muscle 2022;13:355-67.
[CROSSREF] [PUBMED] [PMC] [PDF]
15. Srivastava S. Emerging insights into the metabolic alterations in aging using metabolomics. Metabolites 2019;9:301.
[CROSSREF] [PUBMED] [PMC]
16. Mariash CN. Thyroid hormone and the adipocyte. J Clin Endocrinol Metab 2003;88:5603-4.
[CROSSREF] [PUBMED]
17. Sinha RA, Singh BK, Yen PM. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat Rev Endocrinol 2018;14:259-69.
[CROSSREF] [PUBMED] [PMC] [PDF]
18. Mendelson SD. Metabolic syndrome and psychiatric illness: interactions, pathophysiology, assessment and treatment; Boston: Elsevier/Academic Press; 2008.
19. Jurand J, Oliver MF. Effect of thyroid activity on fatty acid composition of serum lipids. Atherosclerosis 1970;11:125-40.
[CROSSREF] [PUBMED]
20. Zhou G, Xu Y, Zhai Y, Gong Z, Xu K, Wang G, et al. The association between serum palmitic acid and thyroid function. Front Endocrinol (Lausanne) 2022;13:860634.
[CROSSREF] [PUBMED] [PMC]
21. Bremner AP, Feddema P, Leedman PJ, Brown SJ, Beilby JP, Lim EM, et al. Age-related changes in thyroid function: a longitudinal study of a community-based cohort. J Clin Endocrinol Metab 2012;97:1554-62.
[CROSSREF] [PUBMED]
22. Chen X, Zheng X, Ding Z, Su Y, Wang S, Cui B, et al. Relationship of gender and age on thyroid hormone parameters in a large Chinese population. Arch Endocrinol Metab 2020;64:52-8.
[CROSSREF] [PUBMED]
23. Hoogendoorn EH, Hermus AR, de Vegt F, Ross HA, Verbeek AL, Kiemeney LA, et al. Thyroid function and prevalence of anti-thyroperoxidase antibodies in a population with borderline sufficient iodine intake: influences of age and sex. Clin Chem 2006;52:104-11.
[CROSSREF] [PUBMED] [PDF]
24. Nelson DL, Cox MM. Principles of biochemistry; 4th ed. New York: Freeman; 2004.
25. Ntountoumi C, Vlastaridis P, Mossialos D, Stathopoulos C, Iliopoulos I, Promponas V, et al. Low complexity regions in the proteins of prokaryotes perform important functional roles and are highly conserved. Nucleic Acids Res 2019;47:9998-10009.
[CROSSREF] [PUBMED] [PMC] [PDF]
26. Chen L, Chen Y, Wang X, Li H, Zhang H, Gong J, et al. Efficacy and safety of oral branched-chain amino acid supplementation in patients undergoing interventions for hepatocellular carcinoma: a meta-analysis. Nutr J 2015;14:67.
[CROSSREF] [PUBMED] [PMC] [PDF]
27. Holecek M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr Metab (Lond) 2018;15:33.
[PUBMED] [PMC]
28. Krishnamurthy HK, Reddy S, Jayaraman V, Krishna K, Song Q, Rajasekaran KE, et al. Effect of micronutrients on thyroid parameters. J Thyroid Res 2021;2021:1865483.
[CROSSREF] [PUBMED] [PMC] [PDF]
29. Louard RJ, Barrett EJ, Gelfand RA. Overnight branchedchain amino acid infusion causes sustained suppression of muscle proteolysis. Metabolism 1995;44:424-9.
[CROSSREF] [PUBMED]
30. Sun L, Goh HJ, Verma S, Govindharajulu P, Sadananthan SA, Michael N, et al. Brown adipose tissues mediate the metabolism of branched chain amino acids during the transitioning from hyperthyroidism to euthyroidism (TRIBUTE). Sci Rep 2022;12:3693.
[CROSSREF] [PUBMED] [PMC] [PDF]
31. Mannisto PT, Mattila J, Tuominen RK, Vesalainen S. Effects of some putative amino acid neurotransmitters on the stimulated TSH secretion in male rats. Horm Res 1983;17:19-26.
[CROSSREF] [PUBMED]