Diabetes is a serious public health concern that significantly contributes to the global burden of disease. In Korea, the prevalence of diabetes is 12.5% among individuals aged 19 and older, and 14.8% among individuals aged 30 and older as of 2022. The total number of people with diabetes among those aged 19 and older is estimated to be 5.4 million. The incidence of diabetes decreased from 8.1 per 1,000 persons in 2006 to 6.3 per 1,000 persons in 2014, before rising again to 7.5 per 1,000 persons in 2019. Meanwhile, the incidence of type 1 diabetes increased significantly, from 1.1 per 100,000 persons in 1995 to 4.8 per 100,000 persons in 2016, with the prevalence reaching 41.0 per 100,000 persons in 2017. Additionally, the prevalence of gestational diabetes saw a substantial rise from 4.1% in 2007 to 22.3% in 2023. These changes have resulted in increases in the total medical costs for diabetes, covering both outpatient and inpatient services. Therefore, effective diabetes prevention strategies are urgently needed.
The prevalence of obesity in Korea has steadily increased over the past decade, reaching 38.4% in 2021. Notably, the rate of class II– III obesity, defined as a body mass index (BMI) of 30 kg/m2 or higher, exceeded 7% in the same year. Since January 2019, the National Health Insurance Service (NHIS) has provided coverage for bariatric surgery (BS) for eligible patients. Coverage is available for individuals with a BMI of 35 kg/m2 or higher, or those with a BMI of 30 kg/m2 or higher who also have obesity-related comorbidities. Additionally, partial reimbursement is offered for BS in patients with type 2 diabetes mellitus who have BMI values between 27.5 and 30 kg/m2. From 2019 to 2022, the NHIS recorded 9,080 BS procedures, with sleeve gastrectomy being the most commonly performed. The average percentage of weight loss 198±99.7 days post-surgery was 17.9%, with 80.0% of patients losing more than 10% of their body weight. This article presents the trends in obesity and BS in Korea.
The influence of thyroid hormone (TH) on liver metabolism has attracted the attention of pharmacologists seeking new treatments for metabolic dysfunction-associated steatotic liver disease (MASLD), an increasingly common metabolic disorder. In this context, the selective induction of autophagy by TH in preclinical models has been identified as a promising mechanism. In this process, TH clears intrahepatic fat through lipophagy while protecting against inflammation and mitochondrial damage in hepatocytes via mitophagy. Furthermore, TH-induced aggrephagy may represent a protective mechanism to mitigate the development of MASLD-associated hepatocellular carcinoma. Considering the defects in autophagy observed during the progression of human MASLD, the induction of autophagy by TH, its metabolites, and its analogs represent a novel strategy to combat hepatic damage across the MASLD spectrum.
Background Identifying risk factors for postpartum type 2 diabetes in women with gestational diabetes mellitus (GDM) is crucial for effective interventions. We examined whether changes in insulin sensitivity after delivery affects the risk of type 2 diabetes in women with GDM.
Methods This prospective cohort study included 347 women with GDM or gestational impaired glucose tolerance, who attended the follow-up visits at 2 months postpartum and annually thereafter. Changes in insulin sensitivity were calculated using the Matsuda index at GDM diagnosis and at 2 months postpartum (ΔMatsuda index). After excluding women with pregestational diabetes or those followed up only once, we analyzed the risk of postpartum type 2 diabetes based on the ΔMatsuda index tertiles.
Results The incidence of type 2 diabetes at the two-month postpartum visit decreased with increasing ΔMatsuda index tertiles (16.4%, 9.5%, and 1.8%, P=0.001). During a 4.1-year follow-up, 26 out of 230 women who attended more than two follow-up visits (11.3%) developed type 2 diabetes. Compared to the lowest tertile, subjects in the highest ΔMatsuda index tertile showed a significantly reduced risk of type 2 diabetes (hazard ratio, 0.33; 95% confidence interval, 0.12 to 0.93; P=0.036) after adjusting for confounders.
Conclusion Improvement in insulin sensitivity after delivery is associated with a reduced risk of postpartum type 2 diabetes in women with GDM. Postpartum changes in insulin sensitivity could be a useful prediction for future type 2 diabetes development in women with GDM.
Background To evaluate whether insulin resistance and impaired insulin secretion are useful predictors of incident diabetes in Koreans using nationwide population-representative data to enhance data privacy.
Methods This study analyzed the data of individuals without diabetes aged >40 years from the Korea National Health and Nutrition Examination Survey (KNHANES) 2007–2010 and 2015 and the National Health Insurance Service-National Health Screening Cohort (NHIS-HEALS). Owing to privacy concerns, these databases cannot be linked using direct identifiers. Therefore, we generated 10 synthetic datasets, followed by statistical matching with the NHIS-HEALS. Homeostasis model assessment of insulin resistance (HOMA-IR) and homeostasis model assessment of β-cell function (HOMA-β) were used as indicators of insulin resistance and insulin secretory function, respectively, and diabetes onset was captured in NHIS-HEALS.
Results A median of 4,580 (range, 4,463 to 4,761) adults were included in the analyses after statistical matching of 10 synthetic KNHANES and NHIS-HEALS datasets. During a mean follow-up duration of 5.8 years, a median of 4.7% (range, 4.3% to 5.0%) of the participants developed diabetes. Compared to the reference low–HOMA-IR/high–HOMA-β group, the high–HOMA-IR/low– HOMA-β group had the highest risk of diabetes, followed by high–HOMA-IR/high–HOMA-β group and low–HOMA-IR/low– HOMA-β group (median adjusted hazard ratio [ranges]: 3.36 [1.86 to 6.05], 1.81 [1.01 to 3.22], and 1.68 [0.93 to 3.04], respectively).
Conclusion Insulin resistance and impaired insulin secretion are robust predictors of diabetes in the Korean population. A retrospective cohort constructed by combining cross-sectional synthetic and longitudinal claims-based cohort data through statistical matching may be a reliable resource for studying the natural history of diabetes.
Citations
Citations to this article as recorded by
Combining Nationwide Cohorts to Unveil the Predictive Role of Insulin Resistance and Impaired Insulin Secretion in Diabetes Bukyung Kim Endocrinology and Metabolism.2024; 39(5): 699. CrossRef
Nam Hoon Kim, Juneyoung Lee, Suk Chon, Jae Myung Yu, In-Kyung Jeong, Soo Lim, Won Jun Kim, Keeho Song, Ho Chan Cho, Hea Min Yu, Kyoung-Ah Kim, Sang Soo Kim, Soon Hee Lee, Chong Hwa Kim, Soo Heon Kwak, Yong‐ho Lee, Choon Hee Chung, Sihoon Lee, Heung Yong Jin, Jae Hyuk Lee, Gwanpyo Koh, Sang-Yong Kim, Jaetaek Kim, Ju Hee Lee, Tae Nyun Kim, Hyun Jeong Jeon, Ji Hyun Lee, Jae-Han Jeon, Hye Jin Yoo, Hee Kyung Kim, Hyeong-Kyu Park, Il Seong Nam-Goong, Seongbin Hong, Chul Woo Ahn, Ji Hee Yu, Jong Heon Park, Keun-Gyu Park, Chan Ho Park, Kyong Hye Joung, Ohk-Hyun Ryu, Keun Yong Park, Eun-Gyoung Hong, Bong-Soo Cha, Kyu Chang Won, Yoon-Sok Chung, Sin Gon Kim
Endocrinol Metab. 2024;39(5):722-731. Published online August 22, 2024
Background Atherogenic dyslipidemia, which is frequently associated with type 2 diabetes (T2D) and insulin resistance, contributes to the development of vascular complications. Statin therapy is the primary approach to dyslipidemia management in T2D, however, the role of non-statin therapy remains unclear. Ezetimibe reduces cholesterol burden by inhibiting intestinal cholesterol absorption. Fibrates lower triglyceride levels and increase high-density lipoprotein cholesterol (HDL-C) levels via peroxisome proliferator- activated receptor alpha agonism. Therefore, when combined, these drugs effectively lower non-HDL-C levels. Despite this, few clinical trials have specifically targeted non-HDL-C, and the efficacy of triple combination therapies, including statins, ezetimibe, and fibrates, has yet to be determined.
Methods This is a multicenter, prospective, randomized, open-label, active-comparator controlled trial involving 3,958 eligible participants with T2D, cardiovascular risk factors, and elevated non-HDL-C (≥100 mg/dL). Participants, already on moderate-intensity statins, will be randomly assigned to either Ezefeno (ezetimibe/fenofibrate) addition or statin dose-escalation. The primary end point is the development of a composite of major adverse cardiovascular and diabetic microvascular events over 48 months.
Conclusion This trial aims to assess whether combining statins, ezetimibe, and fenofibrate is as effective as, or possibly superior to, statin monotherapy intensification in lowering cardiovascular and microvascular disease risk for patients with T2D. This could propose a novel therapeutic approach for managing dyslipidemia in T2D.
Background This study investigated the prognostic importance of the hemoglobin glycation index (HGI) for macrovascular and microvascular outcomes, mortality, and hypoglycemia occurrence in a type 2 diabetes cohort and compared it to glycated hemoglobin (HbA1c).
Methods Baseline and mean first-year HGI and HbA1c, and the variability thereof, were assessed in 687 individuals with type 2 diabetes (median follow-up, 10.6 years). Multivariable Cox regression was conducted to evaluate the associations of HGI and HbA1c parameters with macrovascular (total and major cardiovascular events) and microvascular outcomes (microalbuminuria, advanced renal failure, retinopathy, and peripheral neuropathy), mortality (all-cause and cardiovascular), and moderate/severe hypoglycemia occurrence.
Results During follow-up, there were 215 total cardiovascular events (176 major) and 269 all-cause deaths (131 cardiovascular). Microalbuminuria developed in 126 patients, renal failure in 104, retinopathy in 161, and neuropathy in 177. There were 90 hypoglycemia episodes. Both HGI and HbA1c predicted all adverse outcomes, except microalbuminuria and hypoglycemia. Their adjusted risks were roughly equivalent for all outcomes. For example, the adjusted hazard ratios (HRs) with 95% confidence intervals (CIs), estimated for 1 standard deviation increments, of mean first-year HGI were 1.23 (1.05 to 1.44), 1.20 (1.03 to 1.38), 1.36 (1.11 to 1.67), 1.28 (1.09 to 1.67), and 1.29 (1.09 to 1.54), respectively, for cardiovascular events, all-cause mortality, renal failure, retinopathy, and neuropathy; whereas the respective HRs (95% CIs) of mean HbA1c were 1.31 (1.12 to 1.53), 1.28 (1.11 to 1.48), 1.36 (1.11 to 1.67), 1.33 (1.14 to 1.55), and 1.29 (1.09 to 1.53).
Conclusion HGI was no better than HbA1c as a predictor of adverse outcomes in individuals with type 2 diabetes, and its clinical use cannot be currently advised.
Background We examined the impact of gout on the end-stage renal disease (ESRD) risk in patients with type 2 diabetes mellitus (T2DM) and determined whether this association differs according to chronic kidney disease (CKD) status.
Methods Using the Korean National Health Insurance Service, this nationwide cohort study enrolled 847,884 patients with T2DM who underwent health checkups in 2009. Based on the presence of CKD (estimated glomerular filtration rate <60 mL/min/1.73 m2) and gout (two outpatient visits or one hospitalization within 5 years), patients were classified into four groups: CKD−Gout−, CKD− Gout+, CKD+Gout−, and CKD+Gout+. Patients with incident ESRD were followed up until December 2018.
Results Among 847,884 patients, 11,825 (1.4%) experienced progression to ESRD. ESRD incidence increased in the following order: 0.77 per 1,000 person-years (PY) in the CKD−Gout− group, 1.34/1,000 PY in the CKD−Gout+ group, 8.20/1,000 PY in the CKD+Gout− group, and 23.06/1,000 PY in the CKD+Gout+ group. The presence of gout modified the ESRD risk in a status-dependent manner. Hazard ratios (HR) were 1.49 (95% confidence interval [CI], 1.32 to 1.69) and 2.24 (95% CI, 2.09 to 2.40) in patients without and with CKD, respectively, indicating a significant interaction (P<0.0001). The CKD+Gout+ group had a markedly higher risk of developing ESRD (HR, 18.9; 95% CI, 17.58 to 20.32) than the reference group (CKD−Gout−).
Conclusion Gout substantially enhances the risk of ESRD, even in the absence of CKD. Concurrent CKD and gout synergistically increase the risk of ESRD. Therefore, physicians should carefully screen for hyperuricemia to prevent progression to ESRD.
Background Previous studies of fixed-dose radioiodine therapy (RIT) for Graves’ disease (GD) have utilized a variety of techniques and reported differing success rates. This study sought to compare the efficacy of RIT using two fixed-dose protocols and to estimate the optimal radioiodine (RAI) activity for the treatment of GD.
Methods This retrospective trial enrolled 658 patients with GD who received RIT between January 2014 and December 2021. Participants were divided into two groups: protocol 1, which utilized a thyroid size-specific RAI dose, and protocol 2, which employed a modified dose calculation approach. The primary outcome assessed was the presence of euthyroidism or hypothyroidism at the 6-month follow-up. The success rates of RIT were compared between the two protocols.
Results The RIT success rate was marginally lower for protocol 2 than for protocol 1 (63.6% vs. 67.2%); however, the risk of treatment failure did not differ considerably between the groups (relative risk, 1.1089; 95% confidence interval, 0.8937 to 1.3758; P=0.3477). The median RAI activity associated with protocol 2 was lower than that for protocol 1 (10.7 mCi vs. 15.0 mCi, P=0.0079), and the frequency of hypothyroidism was significantly lower in the protocol 2 group (39.0% vs. 48.9%, P=0.0117).
Conclusion The success rate of the modified dose calculation protocol was comparable to that of the thyroid size-specific RAI dose protocol. The former approach reduced RAI activity and the incidence of hypothyroidism following RIT without compromising the success rate.
Background Thyroid-associated ophthalmopathy (TAO) involves tissue expansion and inflammation, potentially causing a hypoxic microenvironment. Hypoxia-inducible factor (HIF)-1α is crucial in fibrosis and adipogenesis, which are observed in TAO progression. We investigated the effects of hypoxia on orbital fibroblasts (OFs) in TAO, focusing on the role of HIF-1α in TAO progression.
Methods OFs were isolated from TAO and non-TAO patients (as controls). In addition to HIF-1α, adipogenic differentiation markers including peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein (CEBP) were measured by Western blot, and phenotype changes were evaluated by Oil Red O staining under both normoxia and hypoxia. To elucidate the effect of HIF-1α inhibition, protein expression changes after HIF-1α inhibitor treatment were evaluated under normoxia and hypoxia.
Results TAO OFs exhibited significantly higher HIF-1α expression than non-TAO OFs, and the difference was more distinct under hypoxia than under normoxia. Oil Red O staining showed that adipogenic differentiation of TAO OFs was prominent under hypoxia. Hypoxic conditions increased the expression of adipogenic markers, namely PPARγ and CEBP, as well as HIF-1α in TAO OFs. Interleukin 6 levels also increased in response to hypoxia. The effect of hypoxia on adipogenesis was reduced at the protein level after HIF-1α inhibitor treatment, and this inhibitory effect was sustained even with IGF-1 stimulation in addition to hypoxia.
Conclusion Hypoxia induces tissue remodeling in TAO by stimulating adipogenesis through HIF-1α activation. These data could provide insights into new treatment strategies and the mechanisms of adipose tissue remodeling in TAO.
Moon Young Oh, Hye-Mi Choi, Jinsun Jang, Heejun Son, Seung Shin Park, Minchul Song, Yoo Hyung Kim, Sun Wook Cho, Young Jun Chai, Woosung Chung, Young Joo Park
Endocrinol Metab. 2024;39(5):777-792. Published online October 14, 2024
Background We explored the utility of a small multi-gene DNA panel for assessing molecular profiles of thyroid nodules and influencing clinical decisions by comparing outcomes between tested and untested nodules.
Methods Between April 2022 and May 2023, we prospectively performed fine-needle aspiration (FNA) with gene testing via DNA panel of 11 genes (BRAF, RAS [NRAS, HRAS, KRAS], EZH1, DICER1, EIF1AX, PTEN, TP53, PIK3CA, TERT promoter) in 278 consecutive nodules (panel group). Propensity score-matching (1:1) was performed with 475 nodules that consecutively underwent FNA without gene testing between January 2021 and December 2021 (control group).
Results In the panel group, positive call rate for mutations was 41.7% (BRAF 16.2%, RAS 12.6%, others 11.5%, double mutation 1.4%) for all nodules, and 40.0% (BRAF 4.3%, RAS 19.1%, others 15.7%, double mutation 0.9%) for indeterminate nodules. Benign call rate was 69.8% for all nodules, and 75.7% for indeterminate nodules. In four nodules, additional TP53 (in addition to BRAF or EZH1) or PIK3CA (in addition to BRAF or TERT) mutations were co-detected. Sensitivity, specificity, positive predictive value, and negative predictive value were 80.0%, 53.3%, 88.1%, 38.1% for all nodules, and 78.6%, 45.5%, 64.7%, 62.5% for indeterminate nodules, respectively. Panel group exhibited lower surgical resection rates than the control group for all nodules (27.0% vs. 52.5%, P<0.001), and indeterminate nodules (23.5% vs. 68.2%, P<0.001). Malignancy risk was significantly different between the panel and control groups (81.5% vs. 63.9%, P=0.008) for all nodules.
Conclusion Our panel aids in managing thyroid nodules by providing information on malignancy risk based on mutations, potentially reducing unnecessary surgery in benign nodules or patients with less aggressive malignancies.
Background Phosphatidylinositol 3-kinase (PI3K) regulates cellular development and energy homeostasis. However, the roles of its subunits in organ development remain largely unknown.
Methods We explored the roles of PI3K catalytic subunits in steroidogenic factor 1 (SF1)-expressing cells through knockout (KO) of the p110α and p110β subunits.
Results We examined mice with a double KO of p110α and p110β in SF1-expressing cells (p110αβ KOSF1). Although these animals exhibited no significant changes in the development of the ventromedial hypothalamus, we noted pronounced hypotrophy in the adrenal cortex, testis, and ovary. Additionally, corticosterone and aldosterone levels were significantly reduced. The absence of these subunits also resulted in decreased body weight and survival rate, along with impaired glucose homeostasis, in p110αβ KOSF1 mice.
Conclusion The data demonstrate the specific roles of PI3K catalytic subunits in the development and function of SF1-expressing organs.