Skip Navigation
Skip to contents

Endocrinol Metab : Endocrinology and Metabolism

clarivate
OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > BROWSE ARTICLES > Author index
Search
Young-Suk Choi 1 Article
Endocrine Research
Danshen Extracts Prevents Obesity and Activates Mitochondrial Function in Brown Adipose Tissue
Yoon Hee Cho, Cheol Ryong Ku, Young-Suk Choi, Hyeon Jeong Lee, Eun Jig Lee
Endocrinol Metab. 2021;36(1):185-195.   Published online February 24, 2021
DOI: https://doi.org/10.3803/EnM.2020.835
  • 5,549 View
  • 141 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract PDFPubReader   ePub   
Background
Danshen has been widely used in oriental medicine to improve body function. The purpose of this study is to investigate the effect of water-soluble Danshen extract (DE) on weight loss and on activation proteins involved in mitochondrial biogenesis in brown adipose tissue (BAT) in obese mice.
Methods
BAT was isolated from 7-week-old male Sprague-Dawley rats, and expression of proteins related to mitochondrial biogenesis was confirmed in both brown preadipocytes and mature brown adipocytes treated with DE. For the in vivo study, low-density lipoprotein receptor knock out mice were divided into three groups and treated for 17 weeks with: standard diet; high fat diet (HFD); HFD+DE. Body weight was measured every week, and oral glucose tolerance test was performed after DE treatment in streptozotocin-induced diabetic mice. To observe the changes in markers related to thermogenesis and adipogenesis in the BAT, white adipose tissue (WAT) and liver of experimental animals, tissues were removed and immediately frozen in liquid nitrogen.
Results
DE increased the expression of uncoupling protein 1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha in brown preadipocytes, and also promoted the brown adipocyte differentiation and mitochondrial function in the mature brown adipocytes. Reactive oxygen species production in brown preadipocytes was increased depending on the concentration of DE. DE activates thermogenesis in BAT and normalizes increased body weight and adipogenesis in the liver due to HFD. Browning of WAT was increased in WAT of DE treatment group.
Conclusion
DE protects against obesity and activates mitochondrial function in BAT.

Citations

Citations to this article as recorded by  
  • Pharmacological Benefits and Underlying Mechanisms of Salvia miltiorrhiza against Molecular Pathology of Various Liver Diseases: A Review
    Cho Hyun Hwang, Eungyeong Jang, Jang-Hoon Lee
    The American Journal of Chinese Medicine.2023; 51(07): 1675.     CrossRef
Close layer

Endocrinol Metab : Endocrinology and Metabolism
TOP