Skip Navigation
Skip to contents

Endocrinol Metab : Endocrinology and Metabolism

clarivate
OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > BROWSE ARTICLES > Author index
Search
Hye-Sook Han  (Han HS) 1 Article
Obesity and Metabolism
Roles of Protein Arginine Methyltransferases in the Control of Glucose Metabolism
Hye-Sook Han, Dahee Choi, Seri Choi, Seung-Hoi Koo
Endocrinol Metab. 2014;29(4):435-440.   Published online December 29, 2014
DOI: https://doi.org/10.3803/EnM.2014.29.4.435
  • 5,392 View
  • 62 Download
  • 22 Web of Science
  • 21 Crossref
AbstractAbstract PDFPubReader   

Glucose homeostasis is tightly controlled by the regulation of glucose production in the liver and glucose uptake into peripheral tissues, such as skeletal muscle and adipose tissue. Under prolonged fasting, hepatic gluconeogenesis is mainly responsible for glucose production in the liver, which is essential for tissues, organs, and cells, such as skeletal muscle, the brain, and red blood cells. Hepatic gluconeogenesis is controlled in part by the concerted actions of transcriptional regulators. Fasting signals are relayed by various intracellular enzymes, such as kinases, phosphatases, acetyltransferases, and deacetylases, which affect the transcriptional activity of transcription factors and transcriptional coactivators for gluconeogenic genes. Protein arginine methyltransferases (PRMTs) were recently added to the list of enzymes that are critical for regulating transcription in hepatic gluconeogenesis. In this review, we briefly discuss general aspects of PRMTs in the control of transcription. More specifically, we summarize the roles of four PRMTs: PRMT1, PRMT 4, PRMT 5, and PRMT 6, in the control of hepatic gluconeogenesis through specific regulation of FoxO1- and CREB-dependent transcriptional events.

Citations

Citations to this article as recorded by  
  • Regulation of hepatic lipogenesis by asymmetric arginine methylation
    Hye-Sook Han, Byeong Hun Choi, Seo Young Jang, Seri Choi, Geum-Sook Hwang, Seung-Hoi Koo
    Metabolism.2024; 157: 155938.     CrossRef
  • Protein Arginine Methyltransferases: Emerging Targets in Cardiovascular and Metabolic Disease
    Yan Zhang, Shibo Wei, Eun-Ju Jin, Yunju Jo, Chang-Myung Oh, Gyu-Un Bae, Jong-Sun Kang, Dongryeol Ryu
    Diabetes & Metabolism Journal.2024; 48(4): 487.     CrossRef
  • Anoikis resistance and immune escape mediated by Epstein-Barr virus-encoded latent membrane protein 1-induced stabilization of PGC-1α promotes invasion and metastasis of nasopharyngeal carcinoma
    Chaoliang Liao, Min Li, Xue Chen, Chenpeng Tang, Jing Quan, Ann M. Bode, Ya Cao, Xiangjian Luo
    Journal of Experimental & Clinical Cancer Research.2023;[Epub]     CrossRef
  • An Overview of Epigenetics in Obesity: The Role of Lifestyle and Therapeutic Interventions
    Abeer M. Mahmoud
    International Journal of Molecular Sciences.2022; 23(3): 1341.     CrossRef
  • Protein Arginine Methyltransferase (PRMT) Inhibitors—AMI-1 and SAH Are Effective in Attenuating Rhabdomyosarcoma Growth and Proliferation in Cell Cultures
    Joanna Janisiak, Patrycja Kopytko, Marta Tkacz, Dorota Rogińska, Magdalena Perużyńska, Bogusław Machaliński, Andrzej Pawlik, Maciej Tarnowski
    International Journal of Molecular Sciences.2021; 22(15): 8023.     CrossRef
  • Depletion ofPrmt1in Adipocytes Impairs Glucose Homeostasis in Diet-Induced Obesity
    Seri Choi, Dahee Choi, Yun-Kyung Lee, Seung Hyun Ahn, Je Kyung Seong, Sung Wook Chi, Tae Jung Oh, Sung Hee Choi, Seung-Hoi Koo
    Diabetes.2021; 70(8): 1664.     CrossRef
  • Structure, Activity and Function of the Protein Arginine Methyltransferase 6
    Somlee Gupta, Rajashekar Varma Kadumuri, Anjali Kumari Singh, Sreenivas Chavali, Arunkumar Dhayalan
    Life.2021; 11(9): 951.     CrossRef
  • Dysregulacja poziomu metylotransferaz argininy w patogenezie chorób nowotworowych
    Joanna Janisiak, Patrycja Kopytko, Maciej Tarnowski
    Postępy Higieny i Medycyny Doświadczalnej.2021; 75(1): 272.     CrossRef
  • Non-Histone Arginine Methylation by Protein Arginine Methyltransferases
    Ayad A. Al-Hamashi, Krystal Diaz, Rong Huang
    Current Protein & Peptide Science.2020; 21(7): 699.     CrossRef
  • Posttranslational regulation of PGC‐1α and its implication in cancer metabolism
    Xiangjian Luo, Chaoliang Liao, Jing Quan, Can Cheng, Xu Zhao, Ann M. Bode, Ya Cao
    International Journal of Cancer.2019; 145(6): 1475.     CrossRef
  • PRMT1 suppresses ATF4-mediated endoplasmic reticulum response in cardiomyocytes
    Myong-Ho Jeong, Hyeon-Ju Jeong, Byeong-Yun Ahn, Jung-Hoon Pyun, Ilmin Kwon, Hana Cho, Jong-Sun Kang
    Cell Death & Disease.2019;[Epub]     CrossRef
  • Synthesis of SAM‐Adenosine Conjugates for the Study of m6A‐RNA Methyltransferases
    Colette Atdjian, Laura Iannazzo, Emmanuelle Braud, Mélanie Ethève‐Quelquejeu
    European Journal of Organic Chemistry.2018; 2018(32): 4411.     CrossRef
  • Chemical probes targeting epigenetic proteins: Applications beyond oncology
    Suzanne Ackloo, Peter J. Brown, Susanne Müller
    Epigenetics.2017; 12(5): 378.     CrossRef
  • Development of Potent Type I Protein Arginine Methyltransferase (PRMT) Inhibitors of Leukemia Cell Proliferation
    Chen Wang, Hao Jiang, Jia Jin, Yiqian Xie, Zhifeng Chen, Hao Zhang, Fulin Lian, Yu-Chih Liu, Chenhua Zhang, Hong Ding, Shijie Chen, Naixia Zhang, Yuanyuan Zhang, Hualiang Jiang, Kaixian Chen, Fei Ye, Zhiyi Yao, Cheng Luo
    Journal of Medicinal Chemistry.2017; 60(21): 8888.     CrossRef
  • Sensitive determination of glucose in Dulbecco's modified Eagle medium by high‐performance liquid chromatography with 1‐phenyl‐3‐methyl‐5‐pyrazolone derivatization: application to gluconeogenesis studies
    Zhaoli Ling, Ping Xu, Zeyu Zhong, Fan Wang, Nan Shu, Ji Zhang, Xiange Tang, Li Liu, Xiaodong Liu
    Biomedical Chromatography.2016; 30(4): 601.     CrossRef
  • Biochemistry and regulation of the protein arginine methyltransferases (PRMTs)
    Yalemi Morales, Tamar Cáceres, Kyle May, Joan M. Hevel
    Archives of Biochemistry and Biophysics.2016; 590: 138.     CrossRef
  • Are epigenetic drugs for diabetes and obesity at our door step?
    Andrix O. Arguelles, Sunitha Meruvu, John D. Bowman, Mahua Choudhury
    Drug Discovery Today.2016; 21(3): 499.     CrossRef
  • Expression of epigenetic machinery genes is sensitive to maternal obesity and weight loss in relation to fetal growth in mice
    Polina E. Panchenko, Sarah Voisin, Mélanie Jouin, Luc Jouneau, Audrey Prézelin, Simon Lecoutre, Christophe Breton, Hélène Jammes, Claudine Junien, Anne Gabory
    Clinical Epigenetics.2016;[Epub]     CrossRef
  • Vasculoprotective Effects of 3-Hydroxybenzaldehyde against VSMCs Proliferation and ECs Inflammation
    Byung Soo Kong, Soo Jung Im, Yang Jong Lee, Yoon Hee Cho, Yu Ri Do, Jung Woo Byun, Cheol Ryong Ku, Eun Jig Lee, Maria Cristina Vinci
    PLOS ONE.2016; 11(3): e0149394.     CrossRef
  • Articles in 'Endocrinology and Metabolism' in 2014
    Won-Young Lee
    Endocrinology and Metabolism.2015; 30(1): 47.     CrossRef
  • Icariin regulates PRMT/ADMA/DDAH pathway to improve endothelial function
    Hong-Bo Xiao, Zi-Kui Liu, Xiang-Yang Lu, Chun-Na Deng, Zhi-Feng Luo
    Pharmacological Reports.2015; 67(6): 1147.     CrossRef
Close layer

Endocrinol Metab : Endocrinology and Metabolism
TOP