Skip Navigation
Skip to contents

Endocrinol Metab : Endocrinology and Metabolism

clarivate
OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > BROWSE ARTICLES > Author index
Search
Heejung Bang  (Bang H) 1 Article
Adrenal gland
How to Establish Clinical Prediction Models
Yong-ho Lee, Heejung Bang, Dae Jung Kim
Endocrinol Metab. 2016;31(1):38-44.   Published online March 16, 2016
DOI: https://doi.org/10.3803/EnM.2016.31.1.38
  • 10,012 View
  • 209 Download
  • 115 Web of Science
  • 110 Crossref
AbstractAbstract PDFPubReader   

A clinical prediction model can be applied to several challenging clinical scenarios: screening high-risk individuals for asymptomatic disease, predicting future events such as disease or death, and assisting medical decision-making and health education. Despite the impact of clinical prediction models on practice, prediction modeling is a complex process requiring careful statistical analyses and sound clinical judgement. Although there is no definite consensus on the best methodology for model development and validation, a few recommendations and checklists have been proposed. In this review, we summarize five steps for developing and validating a clinical prediction model: preparation for establishing clinical prediction models; dataset selection; handling variables; model generation; and model evaluation and validation. We also review several studies that detail methods for developing clinical prediction models with comparable examples from real practice. After model development and vigorous validation in relevant settings, possibly with evaluation of utility/usability and fine-tuning, good models can be ready for the use in practice. We anticipate that this framework will revitalize the use of predictive or prognostic research in endocrinology, leading to active applications in real clinical practice.

Citations

Citations to this article as recorded by  
  • Models to predict length of stay in the emergency department: a systematic literature review and appraisal
    Raheleh Mahboub Farimani, Hesam Karim, Alireza Atashi, Fariba Tohidinezhad, Kambiz Bahaadini, Ameen Abu-Hanna, Saeid Eslami
    BMC Emergency Medicine.2024;[Epub]     CrossRef
  • The MISOPRED score: Development and validation of a clinical scoring system to predict the effectiveness of Misoprostol treatment for early pregnancy loss
    Tomer Bar-Noy, Ofer Limonad, Erika Gandelsman, Alon Shrim, Hila Sharabi, Raphy Zarecki, Mordechai Hallak, Ilan Bruchim, Federico Ferrari
    PLOS ONE.2024; 19(5): e0303607.     CrossRef
  • The Brilliance, Attitude, Leadership and Materials (BALM) framework of clinical excellence: an adoptable model for sub-Saharan Africa
    Taoreed Azeez
    Academic Medicine & Surgery.2024;[Epub]     CrossRef
  • Risk prediction models for diabetic nephropathy among type 2 diabetes patients in China: a systematic review and meta-analysis
    Wenbin Xu, Yanfei Zhou, Qian Jiang, Yiqian Fang, Qian Yang
    Frontiers in Endocrinology.2024;[Epub]     CrossRef
  • Risk Assessment Tool in Predicting the Therapeutic Outcomes of Antiseizure Medication in Adults with Epilepsy
    Rose Aniza Rusli, Mohd Makmor Bakry, Noraida Mohamed Shah, Xin Ling Loo, Stefanie Kar Yan Hung
    Therapeutics and Clinical Risk Management.2024; Volume 20: 529.     CrossRef
  • Development of an IVF prediction model for donor oocytes: a retrospective analysis of 10 877 embryo transfers
    Oisin Fitzgerald, Jade Newman, Luk Rombauts, Alex Polyakov, Georgina M Chambers
    Human Reproduction.2024; 39(10): 2274.     CrossRef
  • Development and Validation of a Prognostic Model to Predict Hearing Recovery for Patients With Chronic Otitis Media
    Fengyang Xie, Xiaoyue Zhen, Haiyuan Zhu, Yan Kou, Changle Li, Ling Guo, Li Shi, Jie Han, Xuanchen Zhou
    Ear, Nose & Throat Journal.2023; 102(7): NP327.     CrossRef
  • The reporting of prognostic prediction models for obstetric care was poor: a cross-sectional survey of 10-year publications
    Chunrong Liu, Yana Qi, Xinghui Liu, Meng Chen, Yiquan Xiong, Shiyao Huang, Kang Zou, Jing Tan, Xin Sun
    BMC Medical Research Methodology.2023;[Epub]     CrossRef
  • Severity of Illness Scores and Biomarkers for Prognosis of Patients with Coronavirus Disease 2019
    Rodrigo Cavallazzi, James Bradley, Thomas Chandler, Stephen Furmanek, Julio A. Ramirez
    Seminars in Respiratory and Critical Care Medicine.2023; 44(01): 075.     CrossRef
  • Prognostic risk factor of major salivary gland carcinomas and survival prediction model based on random survival forests
    Yufan Chen, Guoli Li, Wenmei Jiang, Rong Cheng Nie, Honghao Deng, Yingle Chen, Hao Li, Yanfeng Chen
    Cancer Medicine.2023; 12(9): 10899.     CrossRef
  • Semantic Visualization in Functional Recovery Prediction of Intravenous Thrombolysis following Acute Ischemic Stroke in Patients by Using Biostatistics: An Exploratory Study
    Chih-Chun Hsiao, Chun-Gu Cheng, Cheng-Chueh Chen, Hung-Wen Chiu, Hui-Chen Lin, Chun-An Cheng
    Journal of Personalized Medicine.2023; 13(4): 624.     CrossRef
  • Clinical index to quantify the 1-year risk for common postpartum mental disorders at the time of delivery (PMH CAREPLAN): development and internal validation
    Simone N. Vigod, Natalie Urbach, Andrew Calzavara, Cindy-Lee Dennis, Andrea Gruneir, Brett D. Thombs, Mark Walker, Hilary K. Brown
    The British Journal of Psychiatry.2023; 223(3): 422.     CrossRef
  • Prediction of Foot Ulcers Using Artificial Intelligence for Diabetic Patients at Cairo University Hospital, Egypt
    Khadraa Mohamed Mousa, Farid Ali Mousa, Helalia Shalabi Mohamed, Manal Mohamed Elsawy
    SAGE Open Nursing.2023;[Epub]     CrossRef
  • Genetic Studies Investigating Susceptibility to Psoriatic Arthritis: A Narrative Review
    Mehreen Soomro, Ryan Hum, Anne Barton, John Bowes
    Clinical Therapeutics.2023; 45(9): 810.     CrossRef
  • Scope, design, and reporting of prediction models for antineoplastic drugs‐related adverse drug events: A systematic review of machine learning and traditional modeling
    Dan Jiang, Zaiwei Song, Yang Hu, Xinya Li, Rongsheng Zhao
    Journal of Evidence-Based Medicine.2023; 16(4): 420.     CrossRef
  • Using the Weibull Accelerated Failure Time Regression Model to Predict Time to Health Events
    Enwu Liu, Ryan Yan Liu, Karen Lim
    Applied Sciences.2023; 13(24): 13041.     CrossRef
  • Development and validation of a nomogram for predicting low birth weight among pregnant women who had antenatal care visits at Debre Markos Comprehensive and Specialized Hospital, Ethiopia
    Bezawit Melak Fente, Getayeneh Antehunegn Tesema, Temesgen Worku Gudayu, Mengstu Melkamu Asaye
    Frontiers in Medicine.2023;[Epub]     CrossRef
  • Prediction of psychosis: model development and internal validation of a personalized risk calculator
    Tae Young Lee, Wu Jeong Hwang, Nahrie S. Kim, Inkyung Park, Silvia Kyungjin Lho, Sun-Young Moon, Sanghoon Oh, Junhee Lee, Minah Kim, Choong-Wan Woo, Jun Soo Kwon
    Psychological Medicine.2022; 52(13): 2632.     CrossRef
  • Designing a Predictive Model for Colorectal Neoplasia Diagnosis Based on Clinical and Laboratory Findings in Colonoscopy Candidate Patients
    H. Ghajari, A. Sadeghi, S. Khodakarim, M. Zali, S. S. Hashemi Nazari
    Journal of Gastrointestinal Cancer.2022; 53(4): 880.     CrossRef
  • Avoiding immediate whole-body trauma CT: a prospective observational study in stable trauma patients
    Elisa Reitano, Stefano Granieri, Fabrizio Sammartano, Stefania Cimbanassi, Miriam Galati, Shailvi Gupta, Angelo Vanzulli, Osvaldo Chiara
    Updates in Surgery.2022; 74(1): 343.     CrossRef
  • Survival Estimation, Prognostic Factors Evaluation, and Prognostic Prediction Nomogram Construction of Breast Cancer Patients with Bone Metastasis in the Department of Bone and Soft Tissue Tumor: A Single Center Experience of 8 Years in Tianjin, China
    Yao Xu, Haixiao Wu, Guijun Xu, Zhuming Yin, Xin Wang, Vladimir P. Chekhonin, Karl Peltzer, Shu Li, Huiyang Li, Jin Zhang, Wenjuan Ma, Chao Zhang, Sharad Goyal
    The Breast Journal.2022; 2022: 1.     CrossRef
  • Machine Learning Model-Based Simple Clinical Information to Predict Decreased Left Atrial Appendage Flow Velocity
    Chao Li, Guanhua Dou, Yipu Ding, Ran Xin, Jing Wang, Jun Guo, Yundai Chen, Junjie Yang
    Journal of Personalized Medicine.2022; 12(3): 437.     CrossRef
  • Performance of Diabetes and Kidney Disease Screening Scores in Contemporary United States and Korean Populations
    Liela Meng, Keun-Sang Kwon, Dae Jung Kim, Yong-ho Lee, Jeehyoung Kim, Abhijit V. Kshirsagar, Heejung Bang
    Diabetes & Metabolism Journal.2022; 46(2): 273.     CrossRef
  • The Prediction of Diabetes
    Lalit Kumar, Prashant Johri
    International Journal of Reliable and Quality E-Healthcare.2022; 11(1): 1.     CrossRef
  • Endoscopic detection of esophageallow‐gradesquamous dysplasia: How to predict pathologic upgrades before treatment?
    Han Chen, Xiao Ying Zhou, Shuo Li, Liu Qin Jiang, Jie Hua, Xin Min Si, Guo Xin Zhang
    Journal of Digestive Diseases.2022; 23(4): 209.     CrossRef
  • Predicting outcomes after traumatic brain injury: A novel hospital prediction model for a patient reported outcome
    Rachel S. Morris, Juan F. Figueroa, Courtney J. Pokrzywa, Jason K. Barber, Nancy R. Temkin, Carisa Bergner, Basil S. Karam, Patrick Murphy, Lindsay D. Nelson, Purushottam Laud, Zara Cooper, Marc de Moya, Colleen Trevino, Christopher J. Tignanelli, Terri A
    The American Journal of Surgery.2022; 224(4): 1150.     CrossRef
  • Investigating factors affecting musculoskeletal disorders: Predictive models for identifying caregivers at risk
    Abdulrahman M. Khamaj, Abdulelah M. Ali, Mohd Mukhtar Alam
    Work.2022; 72(4): 1311.     CrossRef
  • A scoping review of complication prediction models in spinal surgery: An analysis of model development, validation and impact
    Toros C. Canturk, Daniel Czikk, Eugene K. Wai, Philippe Phan, Alexandra Stratton, Wojtek Michalowski, Stephen Kingwell
    North American Spine Society Journal (NASSJ).2022; 11: 100142.     CrossRef
  • Dynamic Predictive Models With Visualized Machine Learning for Assessing Chondrosarcoma Overall Survival
    Wenle Li, Gui Wang, Rilige Wu, Shengtao Dong, Haosheng Wang, Chan Xu, Bing Wang, Wanying Li, Zhaohui Hu, Qi Chen, Chengliang Yin
    Frontiers in Oncology.2022;[Epub]     CrossRef
  • Prognostic Nomogram of Osteocarcinoma after Surgical Treatment
    Qiuli Wu, Canchun Yang, Haolin Yan, Zheyu Wang, Zhilei Zhang, Qiwei Wang, Renyuan Huang, Xumin Hu, Bo Li, Xueliang Wu
    Journal of Oncology.2022; 2022: 1.     CrossRef
  • External validation and clinical application of the predictive model for severe hypoglycemia
    Jae-Seung Yun, Kyungdo Han, Soo-Yeon Choi, Seon-Ah Cha, Yu-Bae Ahn, Seung-Hyun Ko
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • Clustering of trauma patients based on longitudinal data and the application of machine learning to predict recovery
    Kostas Stoitsas, Saurabh Bahulikar, Leonie de Munter, Mariska A. C. de Jongh, Maria A. C. Jansen, Merel M. Jung, Marijn van Wingerden, Katrijn Van Deun
    Scientific Reports.2022;[Epub]     CrossRef
  • Clinical predictors of antipsychotic treatment resistance: Development and internal validation of a prognostic prediction model by the STRATA-G consortium
    Sophie E. Smart, Deborah Agbedjro, Antonio F. Pardiñas, Olesya Ajnakina, Luis Alameda, Ole A. Andreassen, Thomas R.E. Barnes, Domenico Berardi, Sara Camporesi, Martine Cleusix, Philippe Conus, Benedicto Crespo-Facorro, Giuseppe D'Andrea, Arsime Demjaha, M
    Schizophrenia Research.2022; 250: 1.     CrossRef
  • Factors associated with low-compliance bladder in end-stage renal disease patients and development of a clinical prediction model for urodynamic evaluation: the DUDi score
    Teerayut Tangpaitoon, Valeerat Swatesutipun
    International Urology and Nephrology.2022; 55(1): 75.     CrossRef
  • Improving Machine Learning Diabetes Prediction Models for the Utmost Clinical Effectiveness
    Juyoung Shin, Joonyub Lee, Taehoon Ko, Kanghyuck Lee, Yera Choi, Hun-Sung Kim
    Journal of Personalized Medicine.2022; 12(11): 1899.     CrossRef
  • Assessment of Simple Bedside Wound Characteristics for a Prediction Model for Diabetic Foot Ulcer Outcomes
    Clara Bender, Simon Lebech Cichosz, Louise Pape-Haugaard, Merete Hartun Jensen, Susan Bermark, Anders Christian Laursen, Ole Hejlesen
    Journal of Diabetes Science and Technology.2021; 15(5): 1161.     CrossRef
  • A Risk Score for Predicting the Incidence of Hemorrhage in Critically Ill Neonates: Development and Validation Study
    Rozeta Sokou, Daniele Piovani, Aikaterini Konstantinidi, Andreas G. Tsantes, Stavroula Parastatidou, Maria Lampridou, Georgios Ioakeimidis, Antonis Gounaris, Nicoletta Iacovidou, Anastasios G. Kriebardis, Marianna Politou, Petros Kopterides, Stefanos Bono
    Thrombosis and Haemostasis.2021; 121(02): 131.     CrossRef
  • Development and validation of a risk assessment nomogram for venous thromboembolism associated with hospitalized postoperative Chinese breast cancer patients
    Jing Li, Wan‐Min Qiang, Yan Wang, Xiao‐Yuan Wang
    Journal of Advanced Nursing.2021; 77(1): 473.     CrossRef
  • The role of behaviour problems in screening for mental ill-health in adults with intellectual disability
    F. Westlake, A. Hassiotis, G. Unwin, V. Totsika
    The European Journal of Psychiatry.2021; 35(2): 122.     CrossRef
  • Deep learning model for classifying endometrial lesions
    YunZheng Zhang, ZiHao Wang, Jin Zhang, CuiCui Wang, YuShan Wang, Hao Chen, LuHe Shan, JiaNing Huo, JiaHui Gu, Xiaoxin Ma
    Journal of Translational Medicine.2021;[Epub]     CrossRef
  • Exploration and Development of a Simpler Respiratory Distress Observation Scale (modRDOS-4) as a Dyspnea Screening Tool: A Prospective Bedside Study
    Ru Xin Wong, Ho Shirlynn, Yen Sin Koh, Stella Goh Seow Lin, Daniel Quah, Qingyuan Zhuang
    Palliative Medicine Reports.2021; 2(1): 9.     CrossRef
  • Impact of CT convolution kernel on robustness of radiomic features for different lung diseases and tissue types
    Sarah Denzler, Diem Vuong, Marta Bogowicz, Matea Pavic, Thomas Frauenfelder, Sandra Thierstein, Eric Innocents Eboulet, Britta Maurer, Janine Schniering, Hubert Szymon Gabryś, Isabelle Schmitt-Opitz, Miklos Pless, Robert Foerster, Matthias Guckenberger, S
    The British Journal of Radiology.2021;[Epub]     CrossRef
  • An empirical analysis of dealing with patients who are lost to follow-up when developing prognostic models using a cohort design
    Jenna M. Reps, Peter Rijnbeek, Alana Cuthbert, Patrick B. Ryan, Nicole Pratt, Martijn Schuemie
    BMC Medical Informatics and Decision Making.2021;[Epub]     CrossRef
  • Predictive Value of Active Sacroiliitis in MRI for Flare Among Chinese Patients with Axial Spondyloarthritis in Remission
    Qing Zheng, Wen Liu, Yu Huang, Zhenyu Gao, Yuanhui Wu, Xiaohong Wang, Meimei Cai, Yan He, Shiju Chen, Bin Wang, Lingyu Liu, Shuqiang Chen, Hongjie Huang, Ling Zheng, Rihui Kang, Xiaohong Zeng, Jing Chen, Huaning Chen, Junmin Chen, Zhibin Li, Guixiu Shi
    Rheumatology and Therapy.2021; 8(1): 411.     CrossRef
  • Development of a model for predicting the 4-year risk of symptomatic knee osteoarthritis in China: a longitudinal cohort study
    Limin Wang, Han Lu, Hongbo Chen, Shida Jin, Mengqi Wang, Shaomei Shang
    Arthritis Research & Therapy.2021;[Epub]     CrossRef
  • Digital Communication Biomarkers of Mood and Diagnosis in Borderline Personality Disorder, Bipolar Disorder, and Healthy Control Populations
    George Gillett, Niall M. McGowan, Niclas Palmius, Amy C. Bilderbeck, Guy M. Goodwin, Kate E. A. Saunders
    Frontiers in Psychiatry.2021;[Epub]     CrossRef
  • Prediction of Multiple Organ Failure Complicated by Moderately Severe or Severe Acute Pancreatitis Based on Machine Learning: A Multicenter Cohort Study
    Fumin Xu, Xiao Chen, Chenwenya Li, Jing Liu, Qiu Qiu, Mi He, Jingjing Xiao, Zhihui Liu, Bingjun Ji, Dongfeng Chen, Kaijun Liu, Mirella Giovarelli
    Mediators of Inflammation.2021; 2021: 1.     CrossRef
  • Comparison of multiple statistical models for the development of clinical prediction scores to detect advanced colorectal neoplasms in asymptomatic Thai patients
    Kamonwan Soonklang, Boonying Siribumrungwong, Bunchorn Siripongpreeda, Chirayu Auewarakul
    Medicine.2021; 100(20): e26065.     CrossRef
  • European Childhood Obesity Risk Evaluation (CORE) index based on perinatal factors and maternal sociodemographic characteristics: the Feel4Diabetes-study
    Christina Mavrogianni, George Moschonis, Eva Karaglani, Greet Cardon, Violeta Iotova, Pilar De Miguel-Etayo, Esther M. González-Gil, Κaloyan Tsochev, Tsvetalina Tankova, Imre Rurik, Patrick Timpel, Emese Antal, Stavros Liatis, Konstantinos Makrilakis, Geo
    European Journal of Pediatrics.2021; 180(8): 2549.     CrossRef
  • A prognostic nomogram based on competing endogenous RNA network for clear‐cell renal cell carcinoma
    Yun Peng, Shangrong Wu, Zihan Xu, Dingkun Hou, Nan Li, Zheyu Zhang, Lili Wang, Haitao Wang
    Cancer Medicine.2021; 10(16): 5499.     CrossRef
  • Individual 5-Year Lung Cancer Risk Prediction Model in Korea Using a Nationwide Representative Database
    Yohwan Yeo, Dong Wook Shin, Kyungdo Han, Sang Hyun Park, Keun-Hye Jeon, Jungkwon Lee, Junghyun Kim, Aesun Shin
    Cancers.2021; 13(14): 3496.     CrossRef
  • Development and Validation of a Deep Learning Based Diabetes Prediction System Using a Nationwide Population-Based Cohort
    Sang Youl Rhee, Ji Min Sung, Sunhee Kim, In-Jeong Cho, Sang-Eun Lee, Hyuk-Jae Chang
    Diabetes & Metabolism Journal.2021; 45(4): 515.     CrossRef
  • A nomogram for predicting lymph node metastasis in superficial esophageal squamous cell carcinoma
    Weifeng Zhang, Han Chen, Guoxin Zhang, Guangfu Jin
    The Journal of Biomedical Research.2021; 35(5): 361.     CrossRef
  • Relationship Between Sensibility Tests and Functional Outcomes in Patients With Traumatic Upper Limb Nerve Injuries: A Systematic Review
    Liheng Chen, Emmanuel Ogalo, Chloe Haldane, Sean G. Bristol, Michael J. Berger
    Archives of Rehabilitation Research and Clinical Translation.2021; 3(4): 100159.     CrossRef
  • Personalized 5-Year Prostate Cancer Risk Prediction Model in Korea Based on Nationwide Representative Data
    Yohwan Yeo, Dong Wook Shin, Jungkwon Lee, Kyungdo Han, Sang Hyun Park, Keun Hye Jeon, Jungeun Shin, Aesun Shin, Jinsung Park
    Journal of Personalized Medicine.2021; 12(1): 2.     CrossRef
  • Utility of prediction model score: a proposed tool to standardize the performance and generalizability of clinical predictive models based on systematic review
    Jeff Ehresman, Daniel Lubelski, Zach Pennington, Bethany Hung, A. Karim Ahmed, Tej D. Azad, Kurt Lehner, James Feghali, Zorica Buser, James Harrop, Jefferson Wilson, Shekar Kurpad, Zoher Ghogawala, Daniel M. Sciubba
    Journal of Neurosurgery: Spine.2021; 34(5): 779.     CrossRef
  • Prodromal clinical, demographic, and socio-ecological correlates of asthma in adults: a 10-year statewide big data multi-domain analysis
    Jennifer N. Fishe, Jiang Bian, Zhaoyi Chen, Hui Hu, Jae Min, Francois Modave, Mattia Prosperi
    Journal of Asthma.2020; 57(11): 1155.     CrossRef
  • Clinical risk prediction with random forests for survival, longitudinal, and multivariate (RF-SLAM) data analysis
    Shannon Wongvibulsin, Katherine C. Wu, Scott L. Zeger
    BMC Medical Research Methodology.2020;[Epub]     CrossRef
  • Prognostic models for predicting overall survival in metastatic castration-resistant prostate cancer: a systematic review
    M. Pinart, F. Kunath, V. Lieb, I. Tsaur, B. Wullich, Stefanie Schmidt
    World Journal of Urology.2020; 38(3): 613.     CrossRef
  • Peripheral Nerve Field Stimulation for Chronic Back Pain: Therapy Outcome Predictive Factors
    Eric‐Jan van Gorp, Sam Eldabe, Konstantin V. Slavin, Philippe Rigoard, Stefaan Goossens, Dorothee Mielke, Giancarlo Barolat, Christ Declerck, Chris Gilmore, Ismaïl Gültuna, Kris C.P. Vissers, Jennifer Tinsley, Rudolf Likar, Pierre‐Philippe Luyet
    Pain Practice.2020; 20(5): 522.     CrossRef
  • Biomarker Score in Risk Prediction: Beyond Scientific Evidence and Statistical Performance
    Heejung Bang
    Diabetes & Metabolism Journal.2020; 44(2): 245.     CrossRef
  • Variable selection strategies and its importance in clinical prediction modelling
    Mohammad Ziaul Islam Chowdhury, Tanvir C Turin
    Family Medicine and Community Health.2020; 8(1): e000262.     CrossRef
  • Reply to the Letter to the Editor: Derivation and Internal Validation of a Clinical Prediction Tool to Predict Nonalcoholic Fatty Liver Disease in Patients With Crohn’s Disease
    Scott McHenry, Matthew A Ciorba, Parakkal Deepak
    Inflammatory Bowel Diseases.2020; 26(6): e46.     CrossRef
  • The application of unsupervised deep learning in predictive models using electronic health records
    Lei Wang, Liping Tong, Darcy Davis, Tim Arnold, Tina Esposito
    BMC Medical Research Methodology.2020;[Epub]     CrossRef
  • Development and evaluation of an osteoarthritis risk model for integration into primary care health information technology
    Jason E. Black, Amanda L. Terry, Daniel J. Lizotte
    International Journal of Medical Informatics.2020; 141: 104160.     CrossRef
  • An Individualized Prediction Model for Long-term Lung Function Trajectory and Risk of COPD in the General Population
    Wenjia Chen, Don D. Sin, J. Mark FitzGerald, Abdollah Safari, Amin Adibi, Mohsen Sadatsafavi
    Chest.2020; 157(3): 547.     CrossRef
  • Optimization of the management of pregnant women at high risk of miscarriage and premature birth
    Yu. A. Semenov, V. F. Dolgushina, M. G. Moscvicheva, V. S. Chulkov
    Rossiiskii vestnik akushera-ginekologa.2020; 20(1): 54.     CrossRef
  • Developing a triage tool for use in identifying people living with HIV who are at risk for non-retention in HIV care
    Merhawi T Gebrezgi, Kristopher P Fennie, Diana M Sheehan, Boubakari Ibrahimou, Sandra G Jones, Petra Brock, Robert A Ladner, Mary Jo Trepka
    International Journal of STD & AIDS.2020; 31(3): 244.     CrossRef
  • The impact of age and comorbidity on the postoperative outcomes after emergency surgical management of complicated intra-abdominal infections
    Carmen Payá-Llorente, Elías Martínez-López, Juan Carlos Sebastián-Tomás, Sandra Santarrufina-Martínez, Nicola de’Angelis, Aleix Martínez-Pérez
    Scientific Reports.2020;[Epub]     CrossRef
  • Precision health through prediction modelling: factors to consider before implementing a prediction model in clinical practice
    Mohammad Z. I. Chowdhury, Tanvir C. Turin
    Journal of Primary Health Care.2020; 12(1): 3.     CrossRef
  • Demystifying artificial intelligence in pharmacy
    Scott D Nelson, Colin G Walsh, Casey A Olsen, Andrew J McLaughlin, Joseph R LeGrand, Nick Schutz, Thomas A Lasko
    American Journal of Health-System Pharmacy.2020; 77(19): 1556.     CrossRef
  • Association does not imply prediction: the accuracy of birthweight in predicting child mortality and anthropometric failure
    Akshay Swaminathan, Rockli Kim, S.V. Subramanian
    Annals of Epidemiology.2020; 50: 7.     CrossRef
  • Who's at Risk? A Prognostic Model for Severity Prediction in Pediatric Acute Pancreatitis
    Peter R. Farrell, Lindsey Hornung, Peter Farmer, Angelica W. DesPain, Esther Kim, Ryan Pearman, Beemnet Neway, Ashley Serrette, Sona Sehgal, James E. Heubi, Tom K. Lin, Jaimie D. Nathan, David S. Vitale, Maisam Abu‐El‐Haija
    Journal of Pediatric Gastroenterology and Nutrition.2020; 71(4): 536.     CrossRef
  • Biomarkers of Fabry Nephropathy: Review and Future Perspective
    Tina Levstek, Bojan Vujkovac, Katarina Trebusak Podkrajsek
    Genes.2020; 11(9): 1091.     CrossRef
  • Coledocolitiasis y pancreatitis: las dificultades de la predicción
    David Benigno Páramo Hernández
    Revista Colombiana de Gastroenterología.2020; 35(3): 266.     CrossRef
  • Consistency of variety of machine learning and statistical models in predicting clinical risks of individual patients: longitudinal cohort study using cardiovascular disease as exemplar
    Yan Li, Matthew Sperrin, Darren M Ashcroft, Tjeerd Pieter van Staa
    BMJ.2020; : m3919.     CrossRef
  • Outcome prediction with serial neuron-specific enolase and machine learning in anoxic-ischaemic disorders of consciousness
    Emily Muller, Jonathan P. Shock, Andreas Bender, Julian Kleeberger, Tobias Högen, Martin Rosenfelder, Bubacarr Bah, Alex Lopez-Rolon
    Computers in Biology and Medicine.2019; 107: 145.     CrossRef
  • Machine learning models to predict disease progression among veterans with hepatitis C virus
    Monica A. Konerman, Lauren A. Beste, Tony Van, Boang Liu, Xuefei Zhang, Ji Zhu, Sameer D. Saini, Grace L. Su, Brahmajee K. Nallamothu, George N. Ioannou, Akbar K. Waljee, Davide Bacciu
    PLOS ONE.2019; 14(1): e0208141.     CrossRef
  • A novel risk calculator to predict outcome after surgery for symptomatic spinal metastases; use of a large prospective patient database to personalise surgical management
    David Choi, Menelaos Pavlou, Rumana Omar, Mark Arts, Laurent Balabaud, Jacob Maciej Buchowski, Cody Bunger, Chun Kee Chung, Maarten Hubert Coppes, Bart Depreitere, Michael George Fehlings, Norio Kawahara, Chong-Suh Lee, YeeLing Leung, Juan Antonio Martin-
    European Journal of Cancer.2019; 107: 28.     CrossRef
  • Big Data Research in Neuro-Ophthalmology: Promises and Pitfalls
    Heather E. Moss, Charlotte E. Joslin, Daniel S. Rubin, Steven Roth
    Journal of Neuro-Ophthalmology.2019; 39(4): 480.     CrossRef
  • Nonalcoholic Fatty Liver Disease in Diabetes. Part I: Epidemiology and Diagnosis
    Yong-ho Lee, Yongin Cho, Byung-Wan Lee, Cheol-Young Park, Dae Ho Lee, Bong-Soo Cha, Eun-Jung Rhee
    Diabetes & Metabolism Journal.2019; 43(1): 31.     CrossRef
  • The use of rigorous methods was strongly warranted among prognostic prediction models for obstetric care
    Jing Tan, Yana Qi, Chunrong Liu, Yiquan Xiong, Qiao He, Guiting Zhang, Meng Chen, Guolin He, Wen Wang, Xinghui Liu, Xin Sun
    Journal of Clinical Epidemiology.2019; 115: 98.     CrossRef
  • Support Vector Machines and logistic regression to predict temporal artery biopsy outcomes
    Edsel Ing, Wanhua Su, Matthias Schonlau, Nurhan Torun
    Canadian Journal of Ophthalmology.2019; 54(1): 116.     CrossRef
  • Identifying a risk score for childhood obesity based on predictors identified in pregnant women and 1-year-old infants: An analysis of the data of the Hokkaido Study on Environment and Children’s Health
    Yasuaki Saijo, Yoshiya Ito, Eiji Yoshioka, Yukihiro Sato, Machiko Minatoya, Atsuko Araki, Chihiro Miyashita, Reiko Kishi
    Clinical Pediatric Endocrinology.2019; 28(3): 81.     CrossRef
  • Development and performance evaluation of the Medicines Optimisation Assessment Tool (MOAT): a prognostic model to target hospital pharmacists’ input to prevent medication-related problems
    Cathy Geeson, Li Wei, Bryony Dean Franklin
    BMJ Quality & Safety.2019; 28(8): 645.     CrossRef
  • Machine Learning Accurately Predicts Short-Term Outcomes Following Open Reduction and Internal Fixation of Ankle Fractures
    Robert K. Merrill, Rocco M. Ferrandino, Ryan Hoffman, Gene W. Shaffer, Anthony Ndu
    The Journal of Foot and Ankle Surgery.2019; 58(3): 410.     CrossRef
  • Multidimensional screening for predicting pain problems in adults: a systematic review of screening tools and validation studies
    Elke Veirman, Dimitri M. L. Van Ryckeghem, Annick De Paepe, Olivia J. Kirtley, Geert Crombez
    PAIN Reports.2019; 4(5): e775.     CrossRef
  • iHealthcare: Predictive Model Analysis Concerning Big Data Applications for Interactive Healthcare Systems †
    Md. Ataur Rahman Bhuiyan, Md. Rifat Ullah, Amit Kumar Das
    Applied Sciences.2019; 9(16): 3365.     CrossRef
  • Development of personalized mobile assistant for chronic disease patients: diabetes mellitus case study
    M.V. Kabyshev, S.V. Kovalchuk
    Procedia Computer Science.2019; 156: 123.     CrossRef
  • Validation of childhood asthma predictive tools: A systematic review
    Silvia Colicino, Daniel Munblit, Cosetta Minelli, Adnan Custovic, Paul Cullinan
    Clinical & Experimental Allergy.2019; 49(4): 410.     CrossRef
  • Predicting intradialytic hypotension using heart rate variability
    Samel Park, Wook-Joon Kim, Nam-Jun Cho, Chi-Young Choi, Nam Hun Heo, Hyo-Wook Gil, Eun Young Lee
    Scientific Reports.2019;[Epub]     CrossRef
  • Predicting treatment response using pharmacy register in migraine
    Thomas Folkmann Hansen, Mona Ameri Chalmer, Thilde Marie Haspang, Lisette Kogelman, Jes Olesen
    The Journal of Headache and Pain.2019;[Epub]     CrossRef
  • Development and Evaluation of Electronic Health Record Data-Driven Predictive Models for Pressure Ulcers
    Seul Ki Park, Hyeoun-Ae Park, Hee Hwang
    Journal of Korean Academy of Nursing.2019; 49(5): 575.     CrossRef
  • Characteristics and outcome of acute heart failure patients according to the severity of peripheral oedema
    Ahmad Shoaib, Mamas A. Mamas, Qazi S. Ahmad, Theresa M. McDonagh, Suzanna M.C. Hardman, Muhammad Rashid, Robert Butler, Simon Duckett, Duwarakan Satchithananda, James Nolan, Henry J. Dargie, Andrew L. Clark, John G.F. Cleland
    International Journal of Cardiology.2019; 285: 40.     CrossRef
  • Methodological standards for the development and evaluation of clinical prediction rules: a review of the literature
    Laura E. Cowley, Daniel M. Farewell, Sabine Maguire, Alison M. Kemp
    Diagnostic and Prognostic Research.2019;[Epub]     CrossRef
  • Development and validation of a nomogram to predict the prognosis of patients with squamous cell carcinoma of the bladder
    Mei-Di Hu, Si-Hai Chen, Yuan Liu, Ling-Hua Jia
    Bioscience Reports.2019;[Epub]     CrossRef
  • Assessing surgical difficulty in locally advanced mid–low rectal cancer: the accuracy of two MRI‐based predictive scores
    N. de'Angelis, F. Pigneur, A. Martínez‐Pérez, G. C. Vitali, F. Landi, S. A. Gómez‐Abril, M. Assalino, E. Espin, F. Ris, A. Luciani, F. Brunetti
    Colorectal Disease.2019; 21(3): 277.     CrossRef
  • External Validation of START nomogram to predict 3-Month unfavorable outcome in Chinese acute stroke patients
    BaiLi Song, XiangLiang Chen, Dan Tang, Mako Ibrahim, YuKai Liu, Linda Nyame, Teng Jiang, Wei Wang, Xiang Li, Chao Sun, Zheng Zhao, Jie Yang, JunShan Zhou, JianJun Zou
    Journal of Stroke and Cerebrovascular Diseases.2019; 28(6): 1618.     CrossRef
  • Development and Validation of the Korean Diabetes Risk Score: A 10-Year National Cohort Study
    Kyoung Hwa Ha, Yong-ho Lee, Sun Ok Song, Jae-woo Lee, Dong Wook Kim, Kyung-hee Cho, Dae Jung Kim
    Diabetes & Metabolism Journal.2018; 42(5): 402.     CrossRef
  • Clinical relevance and validity of tools to predict infant, childhood and adulthood obesity: a systematic review
    Oliver J Canfell, Robyn Littlewood, Olivia RL Wright, Jacqueline L Walker
    Public Health Nutrition.2018; 21(17): 3135.     CrossRef
  • Letter to Editor
    Laura E Cowley, Sabine A Maguire, Daniel M Farewell, Alison M Kemp
    Law, Probability and Risk.2018; 17(3): 275.     CrossRef
  • Self‐report assessment of severe periodontitis: Periodontal screening score development
    Maria Clotilde Carra, Alice Gueguen, Frédérique Thomas, Bruno Pannier, Giuseppina Caligiuri, Philippe Gabriel Steg, Marie Zins, Philippe Bouchard
    Journal of Clinical Periodontology.2018; 45(7): 818.     CrossRef
  • Predictive validity of the CriSTAL tool for short-term mortality in older people presenting at Emergency Departments: a prospective study
    Magnolia Cardona, Ebony T. Lewis, Mette R. Kristensen, Helene Skjøt-Arkil, Anette Addy Ekmann, Hanne H. Nygaard, Jonas J. Jensen, Rune O. Jensen, Jonas L. Pedersen, Robin M. Turner, Frances Garden, Hatem Alkhouri, Stephen Asha, John Mackenzie, Margaret Pe
    European Geriatric Medicine.2018; 9(6): 891.     CrossRef
  • Prediction of Drug-Related Risks Using Clinical Context Information in Longitudinal Claims Data
    Andreas D. Meid, Andreas Groll, Dirk Heider, Sarah Mächler, Jürgen-Bernhard Adler, Christian Günster, Hans-Helmut König, Walter E. Haefeli
    Value in Health.2018; 21(12): 1390.     CrossRef
  • Articles inEndocrinology and Metabolismin 2016
    Won-Young Lee
    Endocrinology and Metabolism.2017; 32(1): 62.     CrossRef
  • Development of Clinical Data Mart of HMG-CoA Reductase Inhibitor for Varied Clinical Research
    Hun-Sung Kim, Hyunah Kim, Yoo Jin Jeong, Tong Min Kim, So Jung Yang, Sun Jung Baik, Seung-Hwan Lee, Jae Hyoung Cho, In Young Choi, Kun-Ho Yoon
    Endocrinology and Metabolism.2017; 32(1): 90.     CrossRef
  • Response to Comment by Ayubi and Safiri. Insulin Resistance Predicts Cognitive Decline: An 11-Year Follow-up of a Nationally Representative Adult Population Sample. Diabetes Care 2017;40:751–758
    Laura L. Ekblad, Juha O. Rinne, Pauli Puukka, Hanna Laine, Satu Ahtiluoto, Raimo Sulkava, Matti Viitanen, Antti Jula
    Diabetes Care.2017; 40(9): e136.     CrossRef
  • Encrypted prediction: A hacker's perspective
    Tara Karamlou, Daniel A. Velez, John J. Nigro
    The Journal of Thoracic and Cardiovascular Surgery.2017; 154(6): 2038.     CrossRef
  • Personalized medicine. Closing the gap between knowledge and clinical practice
    Juan-Manuel Anaya, Carolina Duarte-Rey, Juan C. Sarmiento-Monroy, David Bardey, John Castiblanco, Adriana Rojas-Villarraga
    Autoimmunity Reviews.2016; 15(8): 833.     CrossRef
  • Comparison of screening scores for diabetes and prediabetes
    Eduard Poltavskiy, Dae Jung Kim, Heejung Bang
    Diabetes Research and Clinical Practice.2016; 118: 146.     CrossRef
Close layer

Endocrinol Metab : Endocrinology and Metabolism
TOP