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Type II deiodinase (DIO2) is thought to provide triiodothyronine (T3) to the nucleus to meet intracellular needs by deiodinating the 
prohormone thyroxine. DIO2 is expressed widely in many tissues and plays an important role in a variety of physiological processes, 
such as controlling T3 content in developing tissues (e.g., bone, muscles, and skin) and the adult brain, and regulating adaptive ther-
mogenesis in brown adipose tissue (BAT). However, the identification and cloning of DIO2 have been challenging. In recent years, 
several clinical investigations have focused on the Thr92Ala polymorphism, which is closely correlated with clinical syndromes 
such as type 2 diabetes, obesity, hypertension, and osteoarthritis. Thr92Ala-DIO2 was also found to be related to bone and neurode-
generative diseases and tumors. However, relatively few reviews have synthesized research on individual deiodinases, especially 
DIO2, in the past 5 years. This review summarizes current knowledge regarding the physiological functions of DIO2 in thyroid hor-
mone signaling and adaptive thermogenesis in BAT and the brain, as well as the associations between Thr92Ala-DIO2 and bone and 
neurodegenerative diseases and tumors. This discussion is expected to provide insights into the physiological functions of DIO2 and 
the clinical syndromes associated with Thr92Ala-DIO2.
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INTRODUCTION

Iodothyronine deiodinases (DIOs) are essential for maintaining 
appropriate levels of triiodothyronine (T3) in the circulation and 
ensuring its intracellular availability; this role is important since 
T3 has been implicated in the control of a variety of biological 

events including growth, development, and metabolism in ver-
tebrates. DIOs have three isoforms, (DIO1, DIO2, and DIO3), 
which differ in their catalytic properties, tissue distribution, and 
substrate specificity [1]. These isoforms are expressed in a tis-
sue-specific manner in fetal and adult life and selectively cata-
lyze the activation or inactivation of thyroid hormones (THs) 
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[2]. Although both DIO1 and DIO2 activate THs, their functions 
are different; specifically, DIO1 is a scavenger enzyme that re-
cycles iodine to replenish the thyroid’s iodine reservoirs, while 
DIO2 provides T3 to the nucleus to meet intracellular needs [3]. 
DIO3 is the major TH-inactivating enzyme, which converts the 
prohormone thyroxine (T4) to reverse-T3 or T3 to T2. There-
fore, the balance between the enzyme activity of DIO2 and 
DIO3 might determine the local concentration of T3. DIO1 and 
DIO3 are integral plasma membrane proteins. The DIO1 gene is 
expressed in the liver, thyroid, and kidney [4], while the DIO3 
gene is mainly expressed in fetal tissues and the placenta, and 
its expression declines dramatically in adulthood, persisting pri-
marily in the skin and brain, as well as in the uterus during preg-
nancy [3,5,6]. DIO2 is an endoplasmic reticulum-resident pro-
tein that is localized along radial glial cells, in brain barriers, in 
Cajal-Retzius cells, in migrating fibers of the brainstem, and in 
some neurons and glial cells with particular and complex spa-
tiotemporal patterns [7]. Moreover, the DIO2 gene is expressed 
in the telencephalon [8], pituitary gland and hypothalamus 
[9,10], cochlea [11], muscles [12], heart [13], bone [14], brown 
adipose tissue (BAT) [15], glia, and astrocytes [16,17]. The ex-
pression of DIO2 in humans is less restricted than in rats, and 
about 70% of circulating serum T3 is derived from the extrathy-
roidal conversion from T4 to T3 catalyzed by DIO1 and DIO2 
[5]. In two opposite pathological conditions, DIO2 is upregulat-
ed in patients with hypothyroidism and downregulated in those 
with hyperthyroidism. Changes in DIO2 expression or enzyme 
activity contribute to the general effort to maintain T3 homeo-
stasis, both in the circulation and in specific tissues [18]. 

DIO2 expression or enzyme activity is essential for the main-
tenance of normal physiological function, including the central 
nervous system (CNS), BAT, and placenta. Its abnormal expres-
sion and enzyme activity are associated with various physiologi-
cal and/or pathological processes, as listed in Table 1 [19-32]. A 
study showed that the overexpression of Dio2 could arrest tro-
phoblast cell line proliferation at the G1 phase of the cell cycle 
by downregulating cyclin-D1 (Ccnd1) and proliferating cell nu-
clear antigen (Pcna), while promoting apoptosis via increased 
caspase-3 activity and inhibition of the Akt and extracellular sig-
nal-regulated protein kinase (ERK1/2) signaling pathways [30]. 
These results indicate that DIO2 plays an indispensable role in 
many important physiological and/or pathological processes. 

In this review, we summarize the current knowledge on the 
physiological functions and polymorphisms of the DIO2 gene, 
thereby providing insights into the important roles of DIO2 in 
the pathogenesis of diseases.

MOLECULAR STRUCTURE OF DIO2

The identification and cloning of the three deiodinases were re-
markably difficult and proved to be extremely challenging, par-
ticularly DIO2. Utilizing the relatively short but highly con-
served regions between the known Dio1 and Dio3 cDNAs, 
Davey et al. [33] used a reverse transcription/polymerase chain 
reaction strategy to clone a cDNA for Dio2 in the amphibian 
species Rana catesbeiana. Subsequently, Croteau et al. [34] 
used the amphibian Dio2 cDNA to obtain the sequences in rats 
and humans. Dio2 in rats contains an open reading frame of 798 

Table 1. Upregulation and Downregulation of DIO2 Associated with Various Physiological and Pathological Processes

Expression state of DIO2 Species Conditions Processes Reference

Upregulation Humans In adipose tissue of overweight/obese subjects and in adipose tissue of  
pregnant subjects due to maternal exercise

Physiological [19,20]

Mice In intestinal polyps of a mouse model of familial adenomatous polyposis and 
early-stage sporadic colorectal cancer

Pathological [21]

Humans In lungs from patients with idiopathic pulmonary fibrosis Pathological [22]

Humans Tumors including thyroid and pituitary, and brain gliomas Pathological [23-26]

Downregulation Humans Associated with defective autophagy in endometria of patients with  
intrauterine adhesions

Pathological [27]

Mice Associated with acute lung injury in mice Pathological [28]

Mice Associated with impairment in muscle stem cell-endothelial cell crosstalk Physiological [29]

Humans Associated with papillary thyroid carcinoma Pathological [31]

Humans Associated with astrocytomas and glioblastomas Pathological [32]

DIO2, type II deiodinase.
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nucleotides that includes two in-frame TGA codons; this 
798-nucleotide open reading frame is predicted to code for a 
protein of 266 amino acids with a molecular weight of 29.8 
kDa. In humans, DIO2 contains an open reading frame of 819 
nucleotides that codes for a protein of 273 amino acids with a 
molecular weight of 30.0 kDa. Moreover, fluorescence in situ 
hybridization confirmed that human DIO2 is located in chromo-
some 14q24.2→q24.3 [35]. An analysis of protein structure 
showed that a critical residue (the active center Sec) confers 
high catalytic activity to deiodinases [36]. The three-dimension-
al modeling of the DIO2 protein based on hydrophobic cluster 
analyses [37] identified a unique 18-residue “instability” loop in 
the Dio2 molecule, which could be recognized by the WD-40 
propeller of WD repeat and socs box-containing 1 (WSB-1), a 
part of an E3 ubiquitin ligase [38,39]. Ubiquitination of DIO2 is 
a switch mechanism that controls DIO2 activity and intracellu-
lar T3 production, whereby T4 binding and/or T4 catalysis trig-
gers DIO2 inactivation by ubiquitination, which is mediated by 
the E3 ubiquitin ligases WSB-1 and/or the yeast Doa10 mam-
malian ortholog TEB4. Ubiquitinated DIO2 could be either tar-
geted for proteasomal degradation or reactivated by deubiquiti-
nation, a process that is mediated by the deubiquitinases ubiqui-
tin-specific proteases 20/30 (USP20/33) and is important in 
adaptive thermogenesis [40]. The subcellular localization of 
Dio2 is usually in the endoplasmic reticulum; it is also closely 
associated with the cell nucleus, but not with the Golgi appara-
tus (Fig. 1) [41-43]. The subcellular localization of Dio2 in the 
Golgi apparatus could constitute a disease mechanism associat-
ed with the Thr92Ala polymorphism in DIO2 (Fig. 1) [44].

PHYSIOLOGICAL FUNCTIONS OF DIO2

As a deiodinase, the primary physiological function of DIO2 is 
to control the homeostasis of THs in the circulation and tissues, 
together with DIO1 and DIO3. It is also a key molecule for 
cold-adaptive thermogenesis in brown adipocytes, diet-induced 
thermogenic pathways, and it plays a metabolic role in humans 
[18]. The latest findings about DIO2 in TH signaling, adaptive 
thermogenesis in BAT, and the brain were summarized.

Role of DIO2 in TH signaling
Hypothyroidism is a state in which circulating TH levels are in-
adequate. It is commonly caused by autoimmune destruction or 
surgical removal of the thyroid gland (primary hypothyroidism). 
Therapy consisting of daily tablets of levothyroxine (LT4) to 
treat hypothyroidism is commonsensical and has become the 

standard of care for this disease [45,46]. Short-term LT4 treat-
ment reduced the vestibular syndrome and significantly pro-
moted vestibular compensation, and the observed presence of 
thyroid hormone receptors (TRs) and DIO2 in the vestibular nu-
clei supported the possibility that LT4 exerts local actions [47]. 
However, a small percentage of patients with hypothyroidism 
also experienced persistent symptoms despite LT4 therapy, with 
impaired cognition and tiredness [48]. These outcomes might be 
attributed to the lack of thyroid T3 secretion in LT4-treated hy-
pothyroid patients. In patients with intrauterine adhesions, de-
fective autophagy in the endometria has been shown to be asso-
ciated with DIO2 downregulation, while overexpression of 
DIO2 or T3 treatment could restore autophagy and partly re-
verse the epithelial-mesenchymal transition in endometrial epi-
thelial cells [28]. T3 is partially secreted by the thyroid gland, 
but mainly produced by DIO1 and DIO2 in various extrathyroi-
dal tissues [49]. Therefore, several studies have investigated the 
efficiency of combined therapy with LT4+LT3. Shakir et al. [50] 
compared the treatment efficiency among LT4, LT4+LT3, and 
desiccated thyroid extract (DTE) and found similar outcomes 
among hypothyroid patients treated with LT4, LT4+LT3, and 
DTE; furthermore, the patients who were most symptomatic on 
LT4 preferred and responded positively to therapy with 
LT4+LT3 or DTE. A male patient with treatment-resistant de-
pression and hypothyroidism responded to LT3/LT4 combina-
tion therapy, rather than LT4 alone, and he had a DIO2 poly-
morphism [51]. Wolff et al. [52] also addressed the problem of 
developing an optimal TH replacement strategy for hypothyroid 
patients and reported that LT3/LT4 combined therapy was 
slightly better than LT4 monotherapy for treating hypothyroid-
ism. The European Thyroid Association guidelines state that 
LT4+LT3 combination therapy should be considered only as an 
experimental treatment modality in LT4-treated patients whose 
symptoms persist even though their serum thyroid-stimulating 
hormone levels are within the reference range [53]. The above 
results all indicate that the outcomes of combined therapy have 
shown progress in several fields, implying that DIO2 exerts an 
important effect in converting T4 to T3. However, debate con-
tinues regarding LT4+LT3 combination therapy in hypothyroid-
ism patients. Drigo and Bianco [40] showed that DIO2 was as-
sociated with TH signaling in sensory organ development, skel-
etal development, regulation of the hypothalamic-pituitary-thy-
roid axis, adaptive thermogenesis, and metabolic control. The 
circulating TH levels remain fairly consistent during the entire 
adult life of healthy individuals. Therefore, deiodination carried 
out by deiodinases could control the important biological pro-
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cesses (growth, development, metabolism) regulated by THs 
despite no meaningful changes in plasma levels.

Role of DIO2 in adaptive thermogenesis in BAT
BAT is the main site of the sympathetic-mediated adaptive ther-
mogenesis in human newborns and other small mammals, and 
the thermogenic pathway of BAT has been described in detail 
by Drigo et al. [54]. During cold exposure, DIO2 activity was 
found to show an acute approximately 50-fold increase in BAT, 
which accelerated the conversion from T4 to T3 [55]. Our un-
derstanding of the role of DIO2 in BAT physiology is based on 
the disruption of the Dio2 gene (Dio2−/−) in mice, which results 

in BAT-specific hypothyroidism in an otherwise euthyroid ani-
mal [56]. de Jesus et al. [15] demonstrated that the BAT of 
Dio2−/− mice had normal amounts of mitochondria and normal 
uncoupling protein 1 (UCP-1), which is a mitochondrial protein 
that shunts the energy derived from mitochondrial fatty acid ox-
idation from adenosine triphosphate formation to thermogene-
sis. In response to different adrenergic stimulants, Dio2−/− 
brown adipocytes exhibited a decreased cyclic adenosine mono-
phosphate generation capacity, which might be the mechanism 
of impaired thermogenesis [15]. Another study also showed that 
cold exposure increased BAT sympathetic stimulation approxi-
mately 10-fold, with an increase in lipolysis as well as the 

Fig. 1. Schematic representation of the genomic actions of type II deiodinase (DIO2) in target cells, taking adipocytes as an example, as well 
as the occurrence of bone diseases caused by the Thr92Ala polymorphism in DIO2. Thyroxine (T4) is secreted by the thyroid gland and 
transported to the target tissue, such as adipose tissue (AT), through the blood. T4 then enters the cell via transport proteins including mono-
carboxylate transporter 8 (MCT8), MCT10, and organic anion-transporting polypeptide 1C1 (OATP1C1), which are located on the plasma 
and nuclear membranes. In the cytoplasm, DIO2 located in the endoplasmic reticulum catalyzes the conversion of T4 into active triiodothy-
ronine (T3). Active T3 enters the nucleus via transport proteins and binds to thyroid hormone receptors (TRs) to regulate gene expression. 
However, when the subcellular location of DIO2 is in the Golgi apparatus in osteocytes, and the amino acid at position 92 of DIO2 changes 
from T (threonine) into A (alanine), bone diseases, such as osteoarthritis, osteoporosis, and Kashin-Beck disease (KBD), will occur. TRE, 
transcriptional regulatory element.
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mRNA levels of Ucp-1, guanosine monophosphate reductase 
(Gmpr), and peroxisome proliferator-activated receptor gamma 
coactivator 1 (Pgc-1) in Dio2−/− mice [57]. Recent research 
found that T3 increased fatty acid oxidation and mitochondrial 
respiration as well as autophagic flux, mitophagy, and mito-
chondrial biogenesis; however, no significant induction of intra-
cellular reactive oxygen species was found despite high mito-
chondrial respiration and Ucp-1 induction by T3, indicating that 
T3 exerted direct effects on mitochondrial autophagy, activity, 
and turnover in BAT that were essential for thermogenesis [58]. 
These results indicate that DIO2 is an essential component of 
the thyroid-sympathetic synergism required for thermal homeo-
stasis in human newborns and small mammals. 

Role of DIO2 in the brain
THs modulate the expression of a large number of genes in the 
CNS, and the expression of TH-targeted genes is regulated di-
rectly or indirectly through dynamic interactions of (non)ligand 
TRs with chromatin and DNA, in addition to epigenetic modifi-
cations. THs play a critical role in brain development, affecting 
neuronal migration, differentiation, and signal transduction, as 
well as myelin formation, neuronal cell proliferation, migration 
and maturation, synapse establishment and transmission [59]. In 
the brain, active T3 is either available directly from the circula-
tion or is produced locally from T4 by Dio2, which is predomi-
nantly expressed in astrocytes [16,60]. Compared to hypothy-
roid mice, the T3 content in the brain of neonatal Dio2−/− mice 
was markedly reduced, while the mRNA levels of several T3-
responsive genes were either unaffected or much less affected in 
the brain of the Dio2−/− mice, and the Dio2−/− mice exhibited a 
very mild neurological phenotype [59]. Notably, the Dio2−/− 
mice demonstrated no impairments in spatial learning and 
memory, but they displayed emotional alterations with increased 
anxiety-like behavior, as well as enhanced auditory-cued fear 
memory and spontaneous recovery of fear memory following 
extinction [61,62]. Another study indicated that Dio2 influenced 
working memory and verbal fluency in mice through neuropsy-
chological testing [63]. Thus, the functions of Dio2 in learning 
and memory need further to be investigated. Studies have also 
shown that Dio2 expression is upregulated in a variety of neuro-
logical disorders. In mice that experienced 3 hours of status epi-
lepticus (SE) caused by pilocarpine, the mRNA expression of 
Dio2 increased rapidly in the hippocampus, amygdala, and pre-
frontal cortex; however, the targeted disruption of Dio2 in astro-
cytes of mice had effects on highly induced genes in the hippo-
campus associated with inflammation, apoptosis, and cell death, 

suggesting that Dio2 induction caused by SE accelerated the 
production of T3 in different areas of the CNS and modified the 
hippocampal gene expression profile, affecting the balance be-
tween adaptive and maladaptive mechanisms [64]. Moreover, 
Dio2 mRNA expression significantly increased in the frontal 
cortex of two mandibular extension-treated rats compared with 
sham-operated rats, indicating the major involvement of Dio2 
in an attempt to restore more physiological conditions and cor-
rect T3 levels, associated with normotensive status in the brain 
[65]. A recent result also showed that mice lacking both mono-
carboxylate transporter 8 (Mct8) and Dio2 presented peripheral 
and brain hypothyroidism; the severity of the brain hypothy-
roidism seemed permanent and varied across regions, with the 
striatum being a particularly affected area, and brain alterations 
were observed at the histological level compatible with TH de-
ficiency and impaired motor skills [66]. Therefore, further in-
vestigations need to be carried out to understand the functional 
link between TH signaling and the role of Dio2 in different re-
gions of the brain.

POLYMORPHISMS OF DIO2 LEAD TO 
MULTIPLE DISEASES

Polymorphisms of DIO2, including rs225014 (Thr92Ala), rs-
12885300, rs1352815, rs1388382, and rs955849187, have been 
shown to exert significant effects on physiological processes 
and diseases. Studies of polymorphisms of DIO2 in physiologi-
cal and pathological processes or diseases are summarized in 
Table 2 [28,67-88]. Given its high prevalence in human popula-
tions (12% to 36%), the DIO2 rs225014 (Thr92Ala-DIO2) has 
been the most studied polymorphism in humans. It has also 
been researched in mouse and cell models [67], and has been 
found to be a potential risk factor for various diseases. Unfortu-
nately, the clinical syndromes associated with DIO2 gene poly-
morphisms have not been reproduced in all population studies 
[67,89,90]. Maino et al. [53] summarized the clinical signifi-
cance of the Thr92Ala-DIO2 polymorphism in patients with au-
toimmune or surgical hypothyroidism and in patients with 
physical/psychological disorders that could be associated with 
overt hypothyroidism, as well as severe type 2 diabetes mellitus 
or insulin resistance. Next, we focus on the latest findings on 
the role of Thr92Ala-DIO2 in bone diseases, neurodegenerative 
diseases, and other tumors.

Thr92Ala alters the physical function of the DIO2 gene
The subcellular localization of Thr92-Dio2 is usually in the en-



Physiological Functions and Polymorphisms

Copyright © 2023 Korean Endocrine Society www.e-enm.org 195

doplasmic reticulum, while Ala92-Dio2 accumulates in the 
Golgi apparatus, where its presence and/or ensuing oxidative 
stress disrupts basic cellular functions, including mitochondrial 
unbalancing and inflammation, and increases pre-apoptosis 
[43]. In patients with total thyroidectomy treated with LT4, het-
erozygous and rare homozygous patients carrying the Thr92Ala 
polymorphism in the DIO2 gene showed reduced free triiodo-
thyronine (FT3) levels when data were analyzed assuming both 
dominant and recessive models, indicating that Thr92Ala-DIO2 
might inhibit the conversion from T4 to T3 by DIO2 [91]. In 
Graves’ disease (GD) patients, the polymorphic inheritance 
(CC+CT genotype) of DIO2 rs225014 was associated with less 
body weight variation after GD treatment than in patients with 
the wild-type TT genotype, suggesting that DIO2 rs225014 ge-
notyping might have an auxiliary role in predicting the post-
treatment weight behavior of GD patients [92]. de Lima Beltrao 

et al. [93] investigated a possible association between the 
Thr92Ala-DIO2 polymorphism and in-hospital mortality from 
COVID-19 in adult patients admitted between June and August 
2020, and the results showed lower lethality in people with the 
heterozygous genotype (Thr/Ala) than in those with homozy-
gous genotypes (Thr/Thr and Ala/Ala), implying a protective 
role of Thr92Ala-DIO2 heterozygosity. An Ala92-Dio2 poly-
morphism-carrying mouse exhibited unfolded protein response 
and hypothyroidism in distinct brain areas, and the polymor-
phism-containing mice refrained from physical activity, slept 
more, and required additional time to memorize objects; how-
ever, LT3 treatment enhanced T3 signaling in the brain and im-
proved cognition [94]. Compared with euthyroid noncarriers 
(Thr/Thr), euthyroid Ala92-DIO2 carriers showed higher body 
mass index values and fasting plasma glucose levels [95]. These 
results suggest that the Ala92-DIO2 might be deleterious for in-

Table 2. Polymorphisms of DIO2 in Various Physiological/Pathological Processes or Diseases

Polymorphisms of DIO2 Species Processes or diseases Reference

rs225014 Humans T2DM [28,67-76]

Humans Obesity

Humans Arterial hypertension

Humans Osteoarthritis

Mice ALI and pulmonary fibrosis

Humans Dementia

rs12885300 Humans Differentiated thyroid carcinoma [75-83]

Humans Mild cognitive impairment

Humans Bipolar disorder

Humans Depression

Humans Advanced/symptomatic hip osteoarthritis in women

Humans Increased mortality risk

Humans A decreased rate of acute TSH-stimulated FT4 secretion

Humans Stronger association between perfluorooctanoic acid, perfluorononanoic acid, and 
total T3 in the DIO2-CT genotype

Humans Increased vulnerability of cartilage to nonoptimal bone shapes

rs1352815 Humans KBD [84]

rs1388382 Humans KBD [84]

rs955849187 Humans KBD [85]

rs225011 Humans GD, early-onset T2DM, and hepatic glucose output [69,86]

rs225017 Humans Greater IR in T2DM and interaction with Thr92Ala in the modulation of IR [87]

rs225012/rs225010 Humans Intellectual disability [88]

rs225015 Humans Early-onset T2DM and hepatic glucose output [69]

rs6574549 Humans Hepatic glucose output, fasting insulin, insulin action, and energy expenditure [69]

DIO2, type II deiodinase; T2DM, type 2 diabetes mellitus; ALI, acute lung injury; TSH, thyroid-stimulating hormone; FT4, free tetraiodothyronine; T3, 
triiodothyronine; KBD, Kashin-Beck disease; GD, Graves’ disease; IR, insulin resistance.
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dividuals with hypothyroidism and for euthyroid individuals. 

Thr92Ala is associated with bone diseases
A study showed that the Tha92Ala-DIO2 polymorphism was 
associated with decreased femoral neck bone mineral density 
(BMD) and higher bone turnover independent of serum TH lev-
els in patients with cured differentiated thyroid carcinoma, point-
ing to a potential functional role for Tha92Ala-DIO2 in bone 
metabolism [96]. In osteoporosis, female subjects carrying the 
Thr92Ala-DIO2 polymorphism had a significantly lower speed 
of sound and T-scores in the tibia than control participants, indi-
cating a potential functional role of Thr92Ala-DIO2 in the main-
tenance of BMD [97]. However, the presence of the Thr92Ala-
DIO2 polymorphism did not affect thyroid function tests in in-
dividuals who had a normal thyroid gland, but contradictory re-
sults were found in thyroidectomized patients kept on LT4 [90, 
98,99]. In addition, the association between the Thr92Ala-DIO2 
polymorphism and osteoarthritis was not reproduced by Kerk-
hof et al. [100] and a meta-analysis [101]. In contrast, Kerkhof 
et al. [100] showed that the T-allele of the rs12885300 single-
nucleotide polymorphism in the DIO2 gene had a trend toward 
a protective effect for hip osteoarthritis. A recent study using 
CRISPR/Cas9 genome editing found that Dio2Thr92 mice had de-
creased cartilage volume and median thickness, with increased 
articular cartilage damage; in contrast, Dio2Ala92 mutants had no 
signs of osteoarthritis, indicating a protective role of the Ala92 
polymorphism and providing the first functional evidence of a 
role for this candidate Dio2 polymorphism in vivo [102]. Nota-
bly, a meta-analysis found that the Thr92Ala-DIO2 polymor-
phism was also significantly associated with Kashin-Beck dis-
ease [103]. These results suggest that the Thr92Ala-DIO2 poly-
morphism might disrupt bone metabolism, and there might be 
an interaction between Thr92Ala-DIO2 and other polymor-
phisms of DIO2.

Thr92Ala is associated with neurodegenerative diseases
Previous research showed that both the Thr92Ala-DIO2 carriers 
and Ala92-Dio2-expressing HEK-293 cells exhibited a tran-
scriptional fingerprint that included sets of genes involved in 
CNS diseases, ubiquitin, mitochondrial dysfunction, inflamma-
tion, apoptosis, DNA repair, and growth factor signaling [43]. 
Subsequent studies pointed out that the Thr92Ala-DIO2 poly-
morphism in neurodegenerative diseases was related to racial 
differences. For instance, compared with European Americans, 
African Americans with Thr92Ala-DIO2 had greater odds of 
developing Alzheimer disease (AD), dementia, or cognitive im-

pairment without dementia [104]. In older adults, the outcomes 
of a standard questionnaire and evaluations of thyroid function 
were similar regardless of genotyping results for the Thr92Ala-
DIO2 polymorphism, suggesting that the Thr92Ala-DIO2 poly-
morphism may not be associated with relevant cognitive im-
pairment in older adults [16]. In light of these inconsistent find-
ings, the role of Thr92Ala-DIO2 in cognitive impairment in in-
dividuals from different populations remains to be elucidated. 
Moreover, neuropsychological testing revealed that homozy-
gous Ala92-carriers showed both higher verbal fluency and 
higher accuracy in working memory [63], suggesting improved 
executive function in homozygous Ala92-carriers. In autistic 
spectrum disorder (ASD), the minor allele (Ala92) frequency 
was not significantly different in ASD children, but carriers of 
the Thr92Ala-DIO2 polymorphism exhibited higher adaptive 
behavior, such as daily living skills and communication [105]. 
Those results indicate the importance of Thr92Ala-DIO2 in 
neurodegenerative diseases, such as AD, dementia, and ASD. 
However, more evidence is needed in large populations to dem-
onstrate whether Thr92Ala-DIO2 is a risk factor for neurode-
generative diseases, and it is not clear whether the localization 
of Ala92-DIO2 is associated with those diseases.

Thr92Ala is associated with tumors
Only one study has described the relationship between Thr92A-
la and tumors; that study showed that there was a 1.99-fold 
higher risk of developing endometrial cancer in CC homozy-
gotes, reflecting a DIO2 (rs225014) polymorphism, than in TT 
homozygotes, indicating that carriers of the DIO2 polymor-
phism might be predisposed to the development of endometrial 
cancer [106]. Because altered expression of DIO2 was correlat-
ed with thyroid, pituitary and brain tumors, we speculate that 
the Thr92Ala might also have a relationship with these tumors.

CONCLUSIONS

Although the deiodinase family, which consists of DIO1, DIO2, 
and DIO3, is a dynamic system, DIO2 plays an essential role in 
TH signaling and adaptive thermogenesis in BAT and the brain 
by converting T4 to T3 in the target tissues. This review empha-
sizes the physiological functions and polymorphisms of the 
DIO2 gene, which is closely related to physiological/pathologi-
cal processes and tumors; in particular, Thr92Ala-DIO2 has 
been shown to play deleterious or protective roles in different 
diseases (Table 3, Fig. 1). However, these results were based 
only on measurements of expression levels in several specific 
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populations, and the reasons underlying these alterations in ex-
pression and associations with polymorphisms of the DIO2 
gene have rarely been explored. Future studies need to be car-
ried out to explore the pathogenic mechanisms by collectively 
analyzing subcellular localization, expression alterations, pro-
tein structure, and polymorphisms in the DIO2 gene. Consider-
ing the importance of the physiological functions of DIO2 and 
the clinical significance of polymorphisms of DIO2, it might be 
considered as a potential therapeutic target for metabolic diseas-
es (bone metabolism), neurodegenerative diseases (AD, demen-
tia, and ASD), and tumors (thyroid, pituitary, and brain tumors). 
The present review provides insights and orientations for future 
research on DIO2.
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